专题08立体几何中平行与垂直的证明问题1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.平行关系的基础是线线平行,证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线段的比例关系证明线线平行;五是利用线面平行、面面平行的性质定理进行平行转换.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.垂直关系的基础是线线垂直,证明线线垂直常用的方法:一是利用等腰三角形底边中线即高线的性质;二是利用勾股定理;三是利用线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.考点一线线垂直+线面平行问题【例题选讲】[例1](2017·江苏)如图,在三棱锥A—BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[例2](2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.[例3]如图,在四棱锥S-ABCD中,已知SA=SB,四边形ABCD是平行四边形,且平面SAB⊥平面ABCD,点M,N分别是SC,AB的中点.求证:(1)MN∥平面SAD;(2)SN⊥AC.[例4](2016·山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.【对点训练】1.如图,在六面体ABCDE中,平面DBC⊥平面ABC,AE⊥平面ABC.(1)求证:AE∥平面DBC;(2)若AB⊥BC,BD⊥CD,求证:AD⊥DC.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.如图,在正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1的中点.(1)求证:B1D1⊥AE;(2)求证:AC∥平面B1DE.3.如图,在四棱锥P-ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.4.(2013·江苏)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.5.如图1所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.考点二线线(线面)(面面)平行+线面垂直问题【例题选讲】[例1](2014·湖北)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.小学、初中、高中各种试卷真...