专题24长度和距离型取值范围模型【例题选讲】[例1]已知抛物线C:y2=2px(p>0)的焦点为F,A为C上位于第一象限的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D.(1)若当点A的横坐标为3,且△ADF为等边三角形,求C的方程;(2)对于(1)中求出的抛物线C,若点D(x0,0),记点B关于x轴的对称点为E,AE交x轴于点P,且AP⊥BP,求证:点P的坐标为(-x0,0),并求点P到直线AB的距离d的取值范围.[例2]已知椭圆C:+=1(a>b>0)的离心率为,过点M(1,0)的直线l交椭圆C于A,B两点,|MA|=λ|MB|,且当直线l垂直于x轴时,|AB|=.(1)求椭圆C的方程;(2)若λ∈,求弦长|AB|的取值范围.[例3]设点F为椭圆C:+=1(m>0)的左焦点,直线y=x被椭圆C截得弦长为.(1)求椭圆C的方程;(2)圆P:+=r2(r>0)与椭圆C交于A,B两点,M为线段AB上任意一点,直线FM交椭圆C于P,Q两点,AB为圆P的直径,且直线FM的斜率大于1,求|PF|·|QF|的取值范围.[例4]已知椭圆C:+=1(a>b>0)的离心率是,且椭圆经过点(0,1).(1)求椭圆C的标准方程;(2)若直线l1:x+2y-2=0与圆D:x2+y2-6x-4y+m=0相切:(ⅰ)求圆D的标准方程;(ⅱ)若直线l2过定点(3,0),与椭圆C交于不同的两点E,F,与圆D交于不同的两点M,N,求|EF|·|MN|的取值范围.[例5]已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C过点.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点的直线l与椭圆C分别相交于A,B两点,且与圆O:x2+y2=2相交于E,F两点,求|AB|·|EF|2的取值范围.[例6]已知椭圆Γ:+=1,过点P(1,1)作倾斜角互补的两条不同直线l1,l2,设l1与椭圆Γ交于A、B两点,l2与椭圆Γ交于C,D两点.(1)若P(1,1)为线段AB的中点,求直线AB的方程;(2)若直线l1与l2的斜率都存在,记λ=,求λ的取值范围.[例7]已知点F为椭圆E:+=1(a>b>0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线+=1与椭圆E有且仅有一个交点M.(1)求椭圆E的方程;(2)设直线+=1与y轴交于P,过点P的直线l与椭圆E交于不同的两点A,B,若λ|PM|2=|PA|·|PB|,求实数λ的取值范围.【对点训练】1.已知椭圆C:+=1(a>b>0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设直线l:y=kx+m与椭圆C交于M,N两点,O为坐标原点,若kOM·kON=,求原点O到直线l的距离的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.已知椭圆C:+=1(a>b>0)经过点P,且离心率为.(1)求椭圆C的方程;(2)设F1,F2分别为椭圆C的左、右焦点,不经过F1的直线l与椭圆C交于两个不同的点A,B.如果直线AF1,l,BF1的斜率依次成等差数列,求焦点F2到直线l的距离d的取值范围.3.已知椭圆C:+=1(a>b>0)的焦距为2,且过点.(1)求椭圆C的方程;(2)过点M(2,0)的直线交椭圆C于A,B两点,P为椭圆C上一点,O为坐标原点,且满足OA+OB=tOP,其中t∈,求|AB|的取值范围.4.在平面直角坐标系xOy中,已知圆C1:x2+y2=r2(r>0)与直线l0:y=x+2相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足OM+AM=ON,设动点M的轨迹为曲线C.(1)求曲线C的方程;(2)设P,Q是曲线C上两动点,线段PQ的中点为T,直线OP,OQ的斜率分别为k1,k2,且k1k2=-,求|OT|的取值范围.5.已知椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为4.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,AC·BD=0,求|AC|+|BD|的取值范围.6.已知椭圆C:+=1(a>b>0)的离心率e=,直线x+y-1=0被以椭圆C的短轴为直径的圆截得的弦长为.(1)求椭圆C的方程;(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=|MA|·|MB|,求λ的取值范围.7.已知抛物线E:y2=2px(p>0)与过点M(a,0)(a>0)的直线l交于A,B两点,且总有OA⊥OB.(1)确定p与a的数量关系;(2)若|OM|·|AB|=λ|AM|·|MB|,求λ的取值范围.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com