小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题13导数中对数单身狗指数找基友的应用导数在高考中占据了及其重要的地位,导数是研究函数的一个重要的工具,在判断函数的单调性、求函数的极值、最值与解决函数的零点(方程的根)、不等式问题中都用到导数.而这类问题都有一条经验性规则:对数单身狗,指数找基友,指对在一起,常常要分手.考点一对数单身狗【方法总结】在证明或处理含对数函数的不等式时,如f(x)为可导函数,则有(f(x)lnx)′=f′(x)lnx+,若f(x)为非常数函数,求导式子中含有lnx,这类问题需要多次求导,烦琐复杂.通常要将对数型的函数“独立分离”出来,这样再对新函数求导时,就不含对数了,只需一次就可以求出它的极值点,从而避免了多次求导.这种相当于让对数函数“孤军奋战”的变形过程,我们形象的称之为“对数单身狗”.1.设f(x)>0,f(x)lnx+g(x)>0lnx+>0,则(lnx+)′=+()′,不含超越函数,求解过程简单.或者f(x)lnx+g(x)>0f(x)(lnx+)>0,即将前面部分提出,就留下lnx这个单身狗,然后研究剩余部分.2.设f(x)≠0,f(x)lnx+g(x)=0lnx+=0,则(lnx+)′=+()′,不含超越函数,求解过程简单.或者f(x)lnx+g(x)=0f(x)(lnx+)=0,即将前面部分提出,就留下lnx这个单身狗,然后研究剩余部分.【例题选讲】[例1](2016·全国Ⅱ)已知函数f(x)=(x+1)lnx-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解析(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)lnx-4(x-1),f(1)=0,f′(x)=lnx+-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于lnx->0.设g(x)=lnx-,则g′(x)=-=,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.由x2>1和x1x2=1得0<x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<g(1)=0.综上,a的取值范围是(-∞,2].[例2]已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1)求a,b的值;(2)证明:当x>0,且x≠1时,f(x)>.解析(1)f′(x)=-(x>0).由于直线x+2y-3=0的斜率为-,且过点(1,1),故即解得(2)由(1)知f(x)=+(x>0),所以f(x)-=.考虑函数h(x)=2lnx-(x>0),则h′(x)=-=-.所以当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h(x)>0,可得h(x)>0;当x∈(1,+∞)时,h(x)<0,可得h(x)>0.从而当x>0,且x≠1时,f(x)->0,即f(x)>.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【对点精练】1.若不等式xlnx≥a(x-1))对所x≥1有都成立,求实数a的取值范围.1.解析原问题等价于lnx-≥0对所有x≥1都成立,令h(x)=lnx-(x≥1),则f′(x)=.(1)当a≤1时,f′(x)=≥0恒成立,即f(x)在[1,+∞)上单调递增,因而f(x)≥f(1)=0恒成立;(2)当a>1时,令f′(x)=0,则x=a,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,f(x)min=f(a)=lna-a+1,不合题意.综上所述,实数a的取值范围是(-∞,1].2.(2017·全国Ⅱ)已知函数f(x)=ax2-ax-xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.2.解析(1)f(x)的定义域为(0,+∞).设g(x)=ax-a-lnx,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增.所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)由(1)知f(x)=x2-x-xlnx,f′(x)=2x-2-lnx.设h(x)=2x-2-lnx,则h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0.所以h(x)在单调递减,在单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在有唯一零点x0,...