专题11等比数列的判定与证明【基本方法】等比数列的四个判定方法(1)定义法:=q(q是不为0的常数,n∈N*)⇔{an}是等比数列.(2)等比中项法:a=an·an+2(an·an+1·an+2≠0,n∈N*)⇔{an}是等比数列.(3)通项公式法:an=cqn(c,q均是不为0的常数,n∈N*)⇔{an}是等比数列.(4)前n项和公式法:Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.提醒:(1)定义法和等比中项法主要适合在解答题中使用,通项公式法和前n项和公式法主要适合在选择题或填空题中使用.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.【基本题型】[例1](1)将公比为q的等比数列a1,a2,a3,a4,…依次取相邻两项的乘积组成新的数列a1a2,a2a3,a3a4,…,此数列是()A.公比为q的等比数列B.公比为q2的等比数列C.公比为q3的等比数列D.不一定是等比数列(2)在数列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比为2的等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)数列{an}中,a1=p,an+1=qan+d(n∈N*,p,q,d是常数),则d=0是数列{an}是等比数列的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件(4)在数列{an}和{bn}中,an+1=an+bn+,bn+1=an+bn-,a1=1,b1=1.设cn=+,则数列{an+bn}与数列{anbn}分别为()A.首项为2,公比为2的等比数列;首项为1,公比为2的等比数列B.首项为1,公比为2的等比数列;首项为2,公比为2的等比数列C.首项为2,公比为4的等比数列;首项为1,公比为4的等比数列D.首项为1,公比为4的等比数列;首项为2,公比为4的等比数列(5)设{an}是各项为正数的无穷数列,Ai是边长为ai,ai+1的矩形的面积(i=1,2,…),则{An}为等比数列的充要条件是()A.{an}是等比数列B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同[例2]已知a1=2,a2=4,数列{bn}满足:bn+1=2bn+2且an+1-an=bn.(1)求证:数列{bn+2}是等比数列;(2)求数列{an}的通项公式.[例3](2016·全国Ⅲ)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.(1)证明{an}是等比数列,并求其通项公式;(2)若S5=,求λ.[例4]已知数列{an}的首项a1>0,an+1=(n∈N*),且a1=.(1)求证:是等比数列,并求出{an}的通项公式;(2)求数列的前n项和Tn.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[例5]已知数列{an}的前n项和为Sn,n∈N*,a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.(1)求a4的值;(2)证明:为等比数列.[例6]已知数列{an}的前n项和Sn满足Sn=2an+(-1)n(n∈N*).(1)求数列{an}的前三项a1,a2,a3;(2)求证:数列为等比数列,并求出{an}的通项公式.[例7]已知在正项数列{an}中,a1=2,点An(,)在双曲线y2-x2=1上,数列{bn}中,点(bn,Tn)在直线y=-x+1上,其中Tn是数列{bn}的前n项和.(1)求数列{an}的通项公式;(2)求证:数列{bn}是等比数列.[例8]已知数列{an}满足:a1=1,an+1=(n∈N*),设bn=a2n-1.(1)求b2,b3,并证明bn+1=2bn+2;(2)①证明:数列{bn+2}为等比数列;②若a2k,a2k+1,9+a2k+2成等比数列,求正整数k的值.[例9](2019·全国Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;(2)求{an}和{bn}的通项公式.[例10](2018·全国Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.(1)求b1,b2,b3;(2)判断数列{bn}是否为等比数列,并说明理由;(3)求{an}的通项公式.[例11]已知数列{an}的前n项和为Sn,a1=1,an>0,S=a-λSn+1,其中λ为常数.(1)证明:Sn+1=2Sn+λ;(2)是否存在实数λ,使得数列{an}为等比数列,若存在,求出λ;若不存在,说明理由.[例12]设等差数列{an}的前n项和为Sn,a=(a1,1),b=(1,a10),若a·b=24,且S11=143,数列{bn}...