专题12范围问题模型圆锥曲线中范围问题求解的基本思路解决有关范围问题的基本思路是建立目标函数或不等关系:建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题,利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围;建立不等关系时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系.圆锥曲线中范围问题建立不等关系的基本方法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用已知的不等关系构造不等式,从而求出参数的取值范围;(4)利用隐含的不等关系建立不等式,从而求出参数的取值范围.1.用函数思想解决的模型【例题选讲】[例1](1)若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则OP·FP的取值范围为________.(2)已知椭圆C:+=1的左、右焦点分别为F1、F2,以F2为圆心作半径为1的圆F2,P为椭圆C上一点,Q为圆F2上一点,则|PF1|+|PQ|的取值范围为________.(3)在椭圆+=1上任意一点P,Q与P关于x轴对称,若有F1P·F2P≤1,则F1P与F2Q的夹角余弦值的范围为________.【对点训练】1.已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,点P在双曲线的右支上,如果|PF1|=t|PF2|(t∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.2.已知过抛物线C:y2=8x的焦点F的直线l交抛物线于P,Q两点,若R为线段PQ的中点,连接OR并延长交抛物线C于点S,则的取值范围是()A.(0,2)B.[2,+∞)C.(0,2]D.(2,+∞)3.已知椭圆C:+y2=1,P(a,0)为x轴上一动点.若存在以点P为圆心的圆O,使得椭圆C与圆O有四个不同的公共点,则a的取值范围是________.2.用建立不等关系解决的的模型【例题选讲】[例2](4)已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________.(5)已知直线l:y=kx+t与圆C1:x2+(y+1)2=2相交于A,B两点,且△C1AB的面积取得最大值,又直线l与抛物线C2:x2=2y相交于不同的两点M,N,则实数t的取值范围是______________.(6)过抛物线y2=x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角θ≥,点A在x轴上方,则|小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comFA|的取值范围是()A.B.C.D.(7)抛物线C:y2=2px(p>0)的焦点为A,其准线与x轴的交点为B,如果在直线3x+4y+25=0上存在点M,使得∠AMB=90°,则实数p的取值范围是________.(8)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-1,0),F2(1,0),P是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF1·PF2的最小值的取值范围是________.(9)如图,由抛物线y2=12x与圆E:(x-3)2+y2=16的实线部分构成图形Ω,过点P(3,0)的直线始终与图形Ω中的抛物线部分及圆部分有交点,则|AB|的取值范围为()A.[4,5]B.[7,8]C.[6,7]D.[5,6]【对点训练】4.已知P(x0,y0)是椭圆C:+y2=1上的一点,F1,F2是C的两个焦点,若PF1·PF2<0,则x0的取值范围是()A.B.C.D.5.已知直线y=kx+t与圆x2+(y+1)2=1相切且与抛物线C:x2=4y交于不同的两点M,N,则实数t的取值范围是()A.(-∞,-3)∪(0,+∞)B.(-∞,-2)∪(0,+∞)C.(-3,0)D.(-2,0)6.(2017·全国Ⅰ)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)7.如图,抛物线E:x2=4y与M:x2+(y-1)2=16交于A,B两点,点P为劣弧AB上不同于A,B的一个动点,平行于y轴的直线PN交抛物线E于点N,则△PMN的周长的取值范围是()A.(6,12)B.(8,10)C.(6,10)D.(8,12)8.已知点P是椭圆+=1上的动点,且与椭圆的四个顶点不重合,F1、F2分别是椭圆的左、右焦点,O为坐标原点,若点M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围...