第1页|共21页绝密★启用前2022年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合5{2,1,0,1,2},02ABxxìü=--=£<íýîþ∣,则AB=I()A.0,1,2B.{2,1,0}--C.{0,1}D.{1,2}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因2,1,0,1,2A=--,502Bxxìü=£<íýîþ∣,所以0,1,2AB=I.故选:A.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:为第2页|共21页则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D错.故选:B.3.若1iz=+.则|i3|zz+=()A.45B.42C.25D.22第3页|共21页【答案】D【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1iz=+,所以i3i1i31i22izz+=++-=-,所以i34422zz+=+=.故选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V+=´´=.故选:B.第4页|共21页5.将函数π()sin(0)3fxxwwæö=+>ç÷èø的图像向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则w的最小值是()A.16B.14C.13D.12【答案】C【解析】【分析】先由平移求出曲线C的解析式,再结合对称性得,232kkwpppp+=+ÎZ,即可求出w的最小值.【详解】由题意知:曲线C为sinsin()2323yxxppwppwwéùæö=++=++ç÷êúèøëû,又C关于y轴对称,则,232kkwpppp+=+ÎZ,解得12,3kkw=+ÎZ,又0>w,故当0k=时,w的最小值为13.故选:C.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7.函数33cosxxyx-=-在区间ππ,22éù-êúëû的图象大致为()第5页|共21页A.B.C.D.【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令33cos,,22xxfxxxpp-éù=-Î-êúëû,则33cos33cosxxxxfxxxfx---=--=--=-,所以fx为奇函数,排除BD...