第1页|共23页绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340},{4,1,3,5}AxxxB=--<=-,则AB=I()A.{4,1}-B.{1,5}C.{3,5}D.{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得ABI,得到结果.【详解】由2340xx--<解得14x-<<,所以|14Axx=-<<,又因为4,1,3,5B=-,所以1,3AB=I,故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若312iiz=++,则||=z()A.0B.1第2页|共23页C2D.2【答案】C【解析】【分析】先根据21i=-将z化简,再根据向量的模的计算公式即可求出.【详解】因为31+21+21ziiiii=+=-=+,所以22112z=+=.故选:C.【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.514-B.512-C.514+D.512+【答案】D【解析】【分析】设,CDaPEb==,利用212POCDPE=×得到关于,ab的方程,解方程即可得到答案.【详解】如图,设,CDaPEb==,则22224aPOPEOEb=-=-,.第3页|共23页由题意212POab=,即22142abab-=,化简得24()210bbaa-×-=,解得154ba+=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.4.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.15B.25C.12D.45【答案】A【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从OABCD,,,,5个点中任取3个有{,,},{,,},{,,},{,,}OABOACOADOBC{,,},{,,},{,,},{,,}OBDOCDABCABD第4页|共23页{,,},{,,}ACDBCD共10种不同取法,3点共线只有{,,}AOC与{,,}BOD共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)iixyi=L得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.yabx=+B.2yabx=+C.exyab=+D.lnyabx=+【答案】D第5页|共23页【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y和温度x的回归方程类型的是lnyabx=+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.已知圆2260xyx+-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4【答案】B【解析】【分析】根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260xyx+-=化为22(3)9xy-+=,所以圆心C坐标为(3,0)C,半径为3,设(1,2)P,当过点P的直线和直线CP垂直时,圆心到过点P的直线的距离最大,所求的弦长最短,根据弦长公式最小值为229||2982CP-=-=.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.设函数()cosπ()6fxxw=+在[π,π]-的图像大致如下图,则f(x)的最小正周期为()第6页|共23页A.10π9B.7π6C.4π3D.3π2【答案】C【解析】【分析】由图可得:函数图象过点4,09pæö-ç÷èø,即可得...