第1页|共6页一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数)(12z为虚数单位iii的共轭复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合为R,集合1)21(|xxA,086|x2xxB,则BCARA.0|xx42|.xxB4x20|.或xxC4x20|.或xxD3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()pØ∨()qØB.p∨()qØC.()pØ∧()qØD.p∨q4.将函数3cossin()yxxxR+Î的图像向左平移(0)mm个单位长度后,所得到的图像关于y轴对称,则m的最小值是A.12pB.6pC.3pD.56p5.已知04pq,则双曲线22221222222:1:1cossinsinsintanxyyxCCqqqqq与的A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等.6.已知点A(-1,1)、B(1,2)、C(-2,1)、D(3,4),则向量ABuuur和CDuuur方向上的投影为A.322B.3152C.322D.31527.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()73(,/)1vtttsvmst++的单位:的单位:行驶至停止,在此期间汽车继续行驶的距离(单位:m)是A.1+25ln5B.118+25ln3C.4+25ln5D.4+50ln28.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别为1234VVVV,,,,这四个几何体为旋转体,下面两个简单几何体均为多面体,则有第2页|共6页1243.AVVVV1324.BVVVV2134.CVVVV2314.DVVVV9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中抽取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=A.126125B.65C.168125D.75121210.I,(),xxz已知a为常数,函数f(X)=X(nx-ax)有两个极值点xx则121212121A.f(x)>0,f(x)>=-21.f(x)<0,f(x)<=-21.f(x)>0,f(x)<=-21.f(x)<0,f(x)>=-2BCD二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分,请将答案填在答题卡的对应题号的位置上,答错位置,书写不清,模棱两可均不得分.11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示。第3页|共6页(1)直方图中x的值为___________;(2)在这些用户中,用电量落在区间[100,250)内的户数为___________.12.阅读如图所示的程序框图,运行相应的程序,输出的结果i=___________。13.设,,xyzRÎ,且满足:222+y+z=12+3=14xyz,x+,则x+y+z=___________.14.古希腊毕达哥拉斯的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为2(+1)11=n+222nnn,记第n个k边形数为(,)(3)Nnkk,以下列出了部分k边形数中第n个数的表达式:三角形数211(,3)=+n22Nnn正方形数2(,4)=Nnn五边形数231(,5)=-n22Nnn六边形数2(,6)=2-nNnn……………………………………………………………..可以推测N(n,k)的表达式,由此计算N(10,24)=_________________.(二)选考题(请考生在第15、16两题中任选一题作答,请现在答题卡指定位置将你所选的题目序号后的方框图用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,圆O上一点,.CABDDOCE在直径上的射影为点在半径上的射影为若3,CEABADEO的值为.第4页|共6页16.(选修4-4:坐标系与参数方程)在直线坐标系xoy中,椭圆C的参数方程为cossin,0.xaybabjjj为参数在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴为正半轴为极轴)中,直线l与圆O的极坐标分别为2sin=.42mmbprqræö+ç÷èø为非零常数与若直线l经过椭圆C的焦点,且与圆O相切,则椭圆的离心率为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在,,.cos23cos()1.ABCABCabcABCD+中,角、、对应的边分别为已知(I)求角A的大小;(II)若53,5,sinsin.ABCSbBCD的面积求的值18.(本小题满分12分)已知等比数列...