2009年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1﹣z2)i的实部为.2.(5分)已知向量和向量的夹角为30°,,则向量和向量的数量积=.3.(5分)函数f(x)=x3﹣15x2﹣33x+6的单调减区间为.4.(5分)函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[﹣π,0]的图象如图所示,则ω=.5.(5分)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为.6.(5分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为s2=.7.(5分)如图是一个算法的流程图,最后输出的W=.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com8.(5分)在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为.9.(5分)在平面直角坐标系xOy中,点P在曲线C:y=x3﹣10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为.10.(5分)已知,函数f(x)=logax,若正实数m,n满足f(m)>f(n),则m,n的大小关系为.11.(5分)已知集合A={x|log2x≤2},B=(﹣∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=.12.(5分)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上面命题,真命题的序号是(写出所有真命题的序号)13.(5分)如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com14.(5分)设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{﹣53,﹣23,19,37,82}中,则6q=.二、解答题(共6小题,满分89分)15.(14分)设向量.(1)若与垂直,求tan(α+β)的值;(2)求的最大值;(3)若tanαtanβ=16,求证:∥.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.17.(14分)设an是公差不为零的等差数列,Sn为其前n项和,满足a22+a32=a42+a52,S7=7.(1)求数列an的通项公式及前n项和Sn;(2)试求所有的正整数m,使得为数列an中的项.18.(15分)如图,在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.19.(16分)照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为;如果他买进该产品的单价为n元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2,则他对这两种交易的综合满意度为.现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为mA元和mB元,甲买进A与卖出B的综合满意度为h甲,乙卖出A与买进B的综合满意度为h乙.(1)求h甲和h乙关于mA、mB的表达式;当mA=mB时...