精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx本文件免费下载 【共22页】

精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx
精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx
精品解析:上海市金山区2024届高三上学期质量监控数学试题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2023学年第一学期质量监控高三数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合,,则________.【答案】【解析】【分析】根据交集直接计算即可.【详解】由题可知:,,所以故答案为:2.在复平面内,复数对应的点的坐标是,则的共轭复数=________.【答案】##【解析】【分析】根据复数的几何意义可得,结合共轭复数的概念即可求解.【详解】由题意知,该复数为,则.故答案为:.3.不等式的解集为_________.【答案】或【解析】【分析】将分式不等式转化成整式不等式,再利用一元二次不等式解法即可求得结果.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】根据分式不等式解法可知等价于,由一元二次不等式解法可得或;所以不等式的解集为或.故答案为:或4.双曲线的离心率为____.【答案】【解析】【详解】试题分析:由题意得:考点:双曲线离心率5.已知角,的终边关于原点O对称,则______.【答案】【解析】【分析】根据角,的终边关于原点O对称得,即可得到的值.【详解】角,的终边关于原点O对称,,.故答案为:.6.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,则图中的值______.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】【解析】【分析】根据茎叶图可求得两组数据的中位数,进而构造方程求得的值.【详解】由茎叶图可知:乙组数据的中位数为,甲、乙两组数据的中位数相同,甲组数据的中位数为,即,解得:.故答案为:.7.设圆台的上底面和下底面的半径分别为和,母线长为,则该该圆台的高为_________.【答案】【解析】【分析】作出圆台轴截面,求出轴截面的高,即得答案.【详解】作出圆台的轴截面,如图示为等腰梯形,梯形的高即为圆台的高,即高为,故答案为:8.从1,2,3,4,5这五个数中随机抽取两个不同的数,则所抽到的两个数的和大于6的概率为__________(结果用数值表示).【答案】##0.4【解析】【分析】求出所有的基本事件个数以及符合题意的基本事件个数,利用古典概型求概率即可.【详解】根据题意,从1,2,3,4,5这五个数中随机抽取两个不同的数共有,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所抽到两个数的和大于6共有,,,共4种,所以所抽到的两个数的和大于6的概率为.故答案为:9.已知函数()在区间上是严格增函数,且其图像关于点对称,则的值为________.【答案】或【解析】【分析】根据增函数和对称中心特征,求出范围,进而得到答案.【详解】因为,则,函数()在区间上是严格增函数,所以,即;又因为的图像关于点对称,则(),则(),所以(),解得(),结合,所以或.故答案为:或.10.若,则________.【答案】【解析】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】采用赋值法,令即可求得结果.【详解】令,则,所以,故答案为:.11.若函数的图像关于直线对称,且该函数有且仅有7个零点,则的值为________.【答案】【解析】【分析】根据题意,求得的图形过点,得到的图象过点,结合,,联立方程组,求得的值,得出,再根据题意,得到必为函数的一个零点,结合,求得的值,即可求解.【详解】由函数,则函数的图形过点,因为函数的图象关于对称,则函数的图象过点,可得,且,可得,又由,且,可得,联立方程组,解得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以,因为函数图像关于直线对称,且该函数有且仅有7个零点,则必为函数的一个零点,即,可得,解得,所以.故答案为:.12.已知平面向量、、满足,且,则的取值范围是________.【答案】.【解析】【分析】利用平面向量的坐标表示与数量积计算,结合双曲线的定义与性质计算即可.【详解】根据题意不妨设,为坐标原点,则,即点到的距离比到点的距离大2,根据双曲线的定义可知的轨迹为双曲线的一支,以2为长轴,4为焦距,则,小学、初中、...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
精品解析:上海市金山区2023届高三二模数学试题(解析版).docx
精品解析:上海市金山区2023届高三二模数学试题(解析版).docx
免费
0下载
2015年湖北省高考数学试卷(文科).doc
2015年湖北省高考数学试卷(文科).doc
免费
0下载
2012年广东高考(文科)数学试题及答案.doc
2012年广东高考(文科)数学试题及答案.doc
免费
11下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点过关检测15.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点过关检测15.docx
免费
7下载
2017年高考真题数学【文】(山东卷)(含解析版).docx
2017年高考真题数学【文】(山东卷)(含解析版).docx
免费
7下载
黄金卷04-备战2024年高考数学模拟卷(新高考Ⅱ卷专用)(解析版).docx
黄金卷04-备战2024年高考数学模拟卷(新高考Ⅱ卷专用)(解析版).docx
免费
1下载
上海市浦东新区2024届高三上学期期末教学质量检测数学试卷.docx
上海市浦东新区2024届高三上学期期末教学质量检测数学试卷.docx
免费
0下载
2010年高考数学试卷(理)(新课标)(海南宁夏)(空白卷).doc
2010年高考数学试卷(理)(新课标)(海南宁夏)(空白卷).doc
免费
0下载
2014年高考数学试卷(理)(江西)(空白卷).doc
2014年高考数学试卷(理)(江西)(空白卷).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学·理科【统考版】点点练 26.docx
2024版《大考卷》全程考评特训卷·数学·理科【统考版】点点练 26.docx
免费
15下载
2014年全国统一高考数学试卷(理科)(大纲版)(原卷版).doc
2014年全国统一高考数学试卷(理科)(大纲版)(原卷版).doc
免费
29下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(八).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(八).docx
免费
24下载
2017年高考数学试卷(理)(新课标Ⅰ)(解析卷).doc
2017年高考数学试卷(理)(新课标Ⅰ)(解析卷).doc
免费
0下载
2010年湖南高考文科数学试题及答案word版.doc
2010年湖南高考文科数学试题及答案word版.doc
免费
27下载
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word)  课时作业(十三) 点到直线的距离.docx
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word) 课时作业(十三) 点到直线的距离.docx
免费
6下载
2022年高考数学试卷(上海)(秋考)(解析卷) (2).docx
2022年高考数学试卷(上海)(秋考)(解析卷) (2).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】方法技巧专练 2.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】方法技巧专练 2.docx
免费
14下载
1999年重庆高考文科数学真题及答案.doc
1999年重庆高考文科数学真题及答案.doc
免费
30下载
高中数学《合格考资料合集》专题03 函数的概念与性质.pdf
高中数学《合格考资料合集》专题03 函数的概念与性质.pdf
免费
20下载
高中2024版考评特训卷·数学【新教材】考点练21.docx
高中2024版考评特训卷·数学【新教材】考点练21.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群