精品解析:上海市黄浦区2024届高三二模数学试题(解析版).docx本文件免费下载 【共22页】

精品解析:上海市黄浦区2024届高三二模数学试题(解析版).docx
精品解析:上海市黄浦区2024届高三二模数学试题(解析版).docx
精品解析:上海市黄浦区2024届高三二模数学试题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com上海市黄浦区2024届高三二模数学试题2024年4月(完成试卷时间:120分钟总分:150分)一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分4分,第7~12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.若集合,,则_________.【答案】【解析】【分析】由交集的定义求解即可.【详解】因为集合,,则.故答案为:.2.抛物线的焦点到准线的距离是_________________.【答案】2【解析】【详解】焦点(1,0),准线方程,∴焦点到准线的距离是2.3.若,,其中,则_________.【答案】3【解析】【分析】利用平面向量数量积的坐标表示公式,结合同角的三角函数关系式进行求解即可.【详解】,故答案为:4.若一个圆柱的底面半径为2,母线长为3,则此圆柱的侧面积为_________.【答案】【解析】【分析】将圆柱的侧面展开,得到矩形的两边长,求出面积即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】将圆柱的侧面展开为矩形,其中矩形的一边为3,另一边为,故侧面积为.故答案为:5.若的展开式中的系数是,则实数_________.【答案】【解析】【分析】根据通项公式得到,求出,从而得到方程,求出.【详解】通项公式为,令,解得,故,解得.故答案为:6.在中,,,,则_________.【答案】【解析】【分析】根据余弦定理建立方程,可得答案.【详解】在中,根据余弦定理可得:,设,则,整理可得,解得,故.故答案为:.7.随机变量服从正态分布,若,则_________.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】##【解析】【分析】根据正态曲线的性质计算可得.【详解】因为且,所以,则.故答案为:8.若实系数一元二次方程有一个虚数根的模为4,则的取值范围是_________.【答案】【解析】【分析】因为实系数的一元二次方程若有虚数根,则两根共轭,可设两根分别为和,则,又,再由可求的取值范围.【详解】设实系数一元二次方程的两个虚数根为和,则.所以.由.故答案为:9.某校高三年级举行演讲比赛,共有5名选手参加.若这5名选手甲、乙、丙、丁、戊通过抽签来决定上场顺序,则甲、乙两位选手上场顺序不相邻的概率为_________.【答案】##0.6小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【解析】【分析】求出甲、乙两位选手上场顺序不相邻的场数和抽签总共的可能场数,即可得出甲、乙两位选手上场顺序不相邻的概率.【详解】由题意,若甲第一个上场,乙则可以第3,4,5个上场,有种,若甲第二个上场,乙则可以第4,5个上场,有种,若甲第三个上场,乙则可以第1,5个上场,有种,若甲第四个上场,乙则可以第1,2个上场,有种,若甲第五个上场,乙则可以第1,2,3个上场,有种,共有种,而所有的上场顺序有种,∴甲、乙两位选手上场顺序不相邻的概率:,故答案为:.10.已知数列是给定的等差数列,其前项和为,若,且当与时,取得最大值,则的值为_________.【答案】21【解析】【分析】不妨设数列的公差大于零,不妨取,则,设,再分和两种情况讨论,可得出的值,再讨论,即可求出,即可得解.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】不妨设数列的公差大于零,由于,得,且时,,时,,不妨取,则,设,若,则,此时式子取不了最大值;若,则,又时,,因为,此时式子取不了最大值;因此这就说明必成立.若,则,这也就说明不成立,因此,所以.故答案为:.11.如图是某公园局部的平面示意图,图中的实线部分(它由线段与分别以为直径的半圆弧组成)表示一条步道.其中的点是线段上的动点,点O为线段的中点,点在以小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com为直径的半圆弧上,且均为直角.若百米,则此步道的最大长度为_________百米.【答案】【解析】【分析】设半圆步道直径为百米,连接,借助相似三角形性质用表示,结合对称性求出步道长度关于的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为百米,连接,显然,由点O为线段的中点...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
精品解析:上海市金山区2023届高三二模数学试题(解析版).docx
精品解析:上海市金山区2023届高三二模数学试题(解析版).docx
免费
0下载
2015年湖北省高考数学试卷(文科).doc
2015年湖北省高考数学试卷(文科).doc
免费
0下载
2012年广东高考(文科)数学试题及答案.doc
2012年广东高考(文科)数学试题及答案.doc
免费
11下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点过关检测15.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点过关检测15.docx
免费
7下载
2017年高考真题数学【文】(山东卷)(含解析版).docx
2017年高考真题数学【文】(山东卷)(含解析版).docx
免费
7下载
黄金卷04-备战2024年高考数学模拟卷(新高考Ⅱ卷专用)(解析版).docx
黄金卷04-备战2024年高考数学模拟卷(新高考Ⅱ卷专用)(解析版).docx
免费
1下载
上海市浦东新区2024届高三上学期期末教学质量检测数学试卷.docx
上海市浦东新区2024届高三上学期期末教学质量检测数学试卷.docx
免费
0下载
2010年高考数学试卷(理)(新课标)(海南宁夏)(空白卷).doc
2010年高考数学试卷(理)(新课标)(海南宁夏)(空白卷).doc
免费
0下载
2014年高考数学试卷(理)(江西)(空白卷).doc
2014年高考数学试卷(理)(江西)(空白卷).doc
免费
0下载
2024版《大考卷》全程考评特训卷·数学·理科【统考版】点点练 26.docx
2024版《大考卷》全程考评特训卷·数学·理科【统考版】点点练 26.docx
免费
15下载
2014年全国统一高考数学试卷(理科)(大纲版)(原卷版).doc
2014年全国统一高考数学试卷(理科)(大纲版)(原卷版).doc
免费
29下载
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word)  课时作业(八).docx
高中数学·选择性必修·第三册·(RJ-B版)课时作业(word) 课时作业(八).docx
免费
24下载
2017年高考数学试卷(理)(新课标Ⅰ)(解析卷).doc
2017年高考数学试卷(理)(新课标Ⅰ)(解析卷).doc
免费
0下载
2010年湖南高考文科数学试题及答案word版.doc
2010年湖南高考文科数学试题及答案word版.doc
免费
27下载
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word)  课时作业(十三) 点到直线的距离.docx
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word) 课时作业(十三) 点到直线的距离.docx
免费
6下载
2022年高考数学试卷(上海)(秋考)(解析卷) (2).docx
2022年高考数学试卷(上海)(秋考)(解析卷) (2).docx
免费
0下载
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】方法技巧专练 2.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】方法技巧专练 2.docx
免费
14下载
1999年重庆高考文科数学真题及答案.doc
1999年重庆高考文科数学真题及答案.doc
免费
30下载
高中数学《合格考资料合集》专题03 函数的概念与性质.pdf
高中数学《合格考资料合集》专题03 函数的概念与性质.pdf
免费
20下载
高中2024版考评特训卷·数学【新教材】考点练21.docx
高中2024版考评特训卷·数学【新教材】考点练21.docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群