2015年上海市闸北区高考数学一模试卷(理科)一、填空题(54分)本大题共有9题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1.(6分)复数(i是虚数单位)是纯虚数,则实数a的值为.2.(6分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2x﹣),则f(0)+f(2)=.3.(6分)设定点A(0,1),若动点P在函数y=(x>0)图象上,则|PA|的最小值为.4.(6分)用数字“1,2”组成一个四位数,则数字“1,2”都出现的四位数有个.5.(6分)设n∈N*,圆的面积为Sn,则=.6.(6分)在Rt△ABC中,AB=AC=3,M,N是斜边BC上的两个三等分点,则的值为.7.(6分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是.8.(6分)如果不等式x2<|x1﹣|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围是.9.(6分)关于曲线C:x4y﹣3=1,给出下列四个结论:①曲线C是双曲线;②关于y轴对称;③关于坐标原点中心对称;④与x轴所围成封闭图形面积小于2.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则其中正确结论的序号是.(注:把你认为正确结论的序号都填上)二、选择题(18分)本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得6分,否则一律得零分.10.(6分)“a≠2”是“关于x,y的二元一次方程组有唯一解”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件11.(6分)已知等比数列{an}前n项和为Sn,则下列一定成立的是()A.若a3>0,则a2013<0B.若a4>0,则a2014<0C.若a3>0,则S2013>0D.若a4>0,则S2014>012.(6分)对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A=R,运算“⊕”为普通减法;②A={Am×n|Am×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法;③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为()A.①②B.①③C.①②③D.②③三、解答题(本题满分78分)本大题共有4题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.13.(18分)请仔细阅读以下材料:已知f(x)是定义在(0,+∞)上的单调递增函数.求证:命题“设a,b∈R+,若ab>1,则”是真命题.证明因为a,b∈R+,由ab>1得a>>0.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com又因为f(x)是定义在(0,+∞)上的单调递增函数,于是有.①同理有.②由①+②得.故,命题“设a,b∈R+,若ab>1,则”是真命题.请针对以上阅读材料中的f(x),解答以下问题:(1)试用命题的等价性证明:“设a,b∈R+,若,则:ab>1”是真命题;(2)解关于x的不等式f(ax1﹣)+f(2x)>f(a1x﹣)+f(2x﹣)(其中a>0).14.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+ϕ)(A>0,ω>0,ϕ∈(0,π)),x∈[4﹣,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费...