2016年上海市嘉定区高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)=.2.(4分)设集合A={x|x22x﹣>0,x∈R},,则A∩B=.3.(4分)若函数f(x)=ax(a>0且a≠1)的反函数的图象过点(3,﹣1),则a=.4.(4分)已知一组数据6,7,8,9,m的平均数是8,则这组数据的方差是.5.(4分)在正方体ABCDA﹣1B1C1D1中,M为棱A1B1的中点,则异面直线AM与B1C所成的角的大小为(结果用反三角函数值表示).6.(4分)若圆锥的底面周长为2π,侧面积也为2π,则该圆锥的体积为.7.(4分)已知,则cos(30°+2α)=.8.(4分)某程序框图如图所示,则该程序运行后输出的S值是.9.(4分)过点P(1,2)的直线与圆x2+y2=4相切,且与直线axy﹣+1=0垂直,则实数a的值为.10.(4分)甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com传球者将球等可能地传给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是.11.(4分)已知直角梯形ABCD,AD∥BC,∠BAD=90°.AD=2,BC=1,P是腰AB上的动点,则的最小值为.12.(4分)已知n∈N*,若,则n=.13.(4分)对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若,n∈N*,Sn为数列{an}的前n项和,则=.14.(4分)对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.(5分)“函数y=sin(x+φ)为偶函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(5分)下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是()A.1B.2C.3D.417.(5分)已知圆M过定点(2,0),圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦为AB,则|AB|等于()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.4B.3C.2D.118.(5分)已知数列{an}的通项公式为,则数列{an}()A.有最大项,没有最小项B.有最小项,没有最大项C.既有最大项又有最小项D.既没有最大项也没有最小项三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).(1)要使倾斜后容器内的溶液不会溢出,角α的最大值是多少;(2)现需要倒出不少于3000cm3的溶液,当α=60°时,能实现要求吗?请说明理由.20.(14分)已知x∈R,设,,记函数.(1)求函数f(x)取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,,求△ABC的面积S的最大值.21.(14分)设函数f(x)=k•axa﹣x﹣(a>0且a≠1)是奇函数.(1)求常数k的值;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)若,且函数g(x)=a2xa﹣2x﹣2mf﹣(x)在区间[1,+∞)上的最小值为﹣2,求实数m的值.22.(16分)在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=4﹣的距离之比为.(1)求动点P的轨迹C的方程;(2)若轨迹C上的动点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值.(3)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1,且直线OA、...