2017年上海市徐汇区高考数学一模试卷一、填空题(共12小题,第1题至第6题每小题4分,第7题至第12题每小题4分,满分54分)1.(4分)=.2.(4分)已知抛物线C的顶点在平面直角坐标系原点,焦点在x轴上,若C经过点M(1,3),则其焦点到准线的距离为.3.(4分)若线性方程组的增广矩阵为,解为,则a+b=.4.(4分)若复数z满足:i•z=+i(i是虚数单位),则|z|=.5.(4分)在(x+)6的二项展开式中第四项的系数是.(结果用数值表示)6.(4分)在长方体ABCDA﹣1B1C1D1中,若AB=BC=1,AA1=,则异面直线BD1与CC1所成角的大小为.7.(5分)若函数f(x)=的值域为(﹣∞,1],则实数m的取值范围是.8.(5分)如图,在△ABC中,若AB=AC=3,cos∠BAC=,=2,则=.9.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=lg(x2﹣3x+3),则f(x)在R上的零点个数为个.10.(5分)将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,那么不同的停车位置安排共有种?(结果用数值表示)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com11.(5分)已知数列{an}是首项为1,公差为2m的等差数列,前n项和为Sn,设bn=(n∈N*),若数列{bn}是递减数列,则实数m的取值范围是.12.(5分)若使集合A={x|(kxk﹣26﹣)(x4﹣)>0,x∈Z}中的元素个数最少,则实数k的取值范围是.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x=kπ+(k∈Z)“是“tanx=1”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(5分)若1﹣i(i是虚数单位)是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=2,c=1﹣C.b=2﹣,c=1﹣D.b=2﹣,c=315.(5分)已知函数f(x)为R上的单调函数,f1﹣(x)是它的反函数,点A(﹣1,3)和点B(1,1)均在函数f(x)的图象上,则不等式|f1﹣(2x)|<1的解集为()A.(﹣1,1)B.(1,3)C.(0,log23)D.(1,log23)16.(5分)如图,两个椭圆+=1,+=1内部重叠区域的边界记为曲线C,P是曲线C上任意一点,给出下列三个判断:①P到F1(﹣4,0)、F2(4,0)、E1(0,﹣4)、E2(0,4)四点的距离之和为定值;②曲线C关于直线y=x、y=x﹣均对称;③曲线C所围区域面积必小于36.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com上述判断中正确命题的个数为()A.0个B.1个C.2个D.3个三、解答题(共5小题,满分76分)17.(14分)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.(1)求PD与平面PAC所成的角的大小;(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.18.(14分)已知函数f(x)=.(1)当x∈[0,]时,求f(x)的值域;(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f()=,a=4,b+c=5,求△ABC的面积.19.(14分)某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1),B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2)该团队已筹到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润,最小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com大利润为多少?20.(16分)如图,双曲线Γ:﹣y2=1的左、右焦点分别为F1,F2,过F2作直线l交y轴于点Q.(1)当直线l平行于Γ的一条渐近线时,求点F1到直线l的距离;(2)当直线l的斜率为1时,在Γ的右支上是否存在点P,满足=0?若存在,求出P点的坐标;若不存在,说明理由;(3)若直线l与Γ交于不同两点A、B,且Γ上存在一点M,满足++4=(其中O为坐标原点),求直线l的方程.21.(18分)正整数列{an},{bn}满足:a1≥b1,且对一切k≥2,k∈N*,ak是ak1﹣与bk1﹣的等差中项,bk是ak1﹣与bk1﹣的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{an}是...