2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{an}的前n项和为Sn,若点(n,Sn)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则an=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=8x﹣的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+txt﹣在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x5﹣)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.21.(18分)若数列A:a1,a2,…,an(n≥3)中(1≤i≤n)且对任意的2≤k≤n1﹣,ak+1+ak1﹣>2ak恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,an中,a1=1,an=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数,求M的最小值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【考点】6F:极限及其运算.菁优网版权所有【专题】35:转化思想;4R:转化法;52:导数的概念及应用.【分析】由n→+∞,→0,即可求得=1.【解答】解:当n→+∞,→0,∴=1,故答案为:1.【点评】本题考查极限的运算,考查计算能力,属于基础题.2.(4分)已知集...