2014年上海市黄浦区高考数学二模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.(4分)函数y=log2的定义域是.2.(4分)函数y=cos2x﹣sin2x的最小正周期T=.3.(4分)已知全集U=R,集合A={x|x+a≥0,x∈R},B={x||x﹣1|≤3,x∈R}.若(∁UA)∩B=[﹣2,4],则实数a的取值范围是.4.(4分)已知等差数列{an}(n∈N*)的公差为3,a1=﹣1,前n项和为Sn,则的数值是.5.(4分)函数f(x)=|logax|(a>0,且a≠1)的单调递增区间是.6.(4分)函数f(x)=﹣x2(x≤0)的反函数是f﹣1(x),则反函数的解析式是f﹣1(x)=.7.(4分)方程log2(4x﹣3)=x+1的解x=.8.(4分)在△ABC中,角A、B、C所对的边的长度分别为a、b、c,且a2+b2﹣c2=ab,则∠C=.9.(4分)已知x1=1﹣i(i是虚数单位,以下同)是关于x的实系数一元二次方程x2+ax+b=0的一个根,则实数a=,b=.10.(4分)若用一个平面去截球体,所得截面圆的面积为16π,球心到该截面的距离是3,则这个球的表面积是.11.(4分)(理)已知向量=(3,﹣4),=(0,﹣1),则向量在向量的方向上的投影是.12.(4分)(理)直线l的参数方程是(t∈R,t是参数),则直线l的一个方向向量是.(答案不唯一)13.(4分)(理)某个不透明的袋中装有除颜色外其它特征完全相同的8个乒乓球(其中3个是白色球,5个是黄色球),小李同学从袋中一个一个地摸乒乓球(每次摸出球后不放回),当摸到的球是黄球时停止摸球.用随机变小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com量ξ表示小李同学首先摸到黄色乒乓球时的摸球次数,则随机变量ξ的数学期望值Eξ=.14.(4分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=,若关于x的方程[f(x)]2+a•f(x)+b=0(a、b∈R)有且只有7个不同实数根,则实数a的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)已知a、b∈R,且ab≠0,则下列结论恒成立的是()A.a+b≥2B.+≥2C.|+|≥2D.a2+b2>2ab16.(5分)已知空间直线l不在平面α内,则“直线l上有两个点到平面α的距离相等”是“l∥α”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件17.(5分)已知a、b∈R,a2+b2≠0,则直线l:ax+by=0与圆:x2+y2+ax+by=0的位置关系是()A.相交B.相切C.相离D.不能确定18.(5分)(理)给出下列命题:(1)已知事件A、B是互斥事件,若P(A)=0.25,P(B)=0.35,则P(A∪B)=0.60;(2)已知事件A、B是互相独立事件,若P(A)=0.15,P(B)=0.60,则P(B)=0.51(表示事件A的对立事件);(3)(+)18的二项展开式中,共有4个有理项.则其中真命题的序号是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.19.(12分)(理)已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.(1)求证:DC1⊥平面BCD;(2)求二面角A﹣BD﹣C的大小.20.(14分)已知复数z1=cosx+i,z2=1﹣isinx,x∈R.(1)求|z1﹣z2|的最小值;(2)设z=z1•z2,记f(x)=Imz(Imz表示复数z的虚部).将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图象向右平移个单位长度,得到函数g(x)的图象.试求函数g(x)的解析式.21.(12分)某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且OB=(1+)百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.(1)试将y表示成x的函数,并求出函数y的...