2018年上海市普陀区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)抛物线x2=12y的准线方程为2.(4分)若函数f(x)=是奇函数,则实数m=3.(4分)若函数f(x)=的反函数为g(x),则函数g(x)的零点为4.(4分)书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为(结果用数值表示)5.(4分)在锐角三角形△ABC中,角A、B、C的对边分别为a、b、c,若(b2+c2a﹣2)tanA=bc,则角A的大小为6.(4分)若(x3﹣)n的展开式中含有非零常数项,则正整数n的最小值为7.(5分)某单位有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(每辆车最多只获一次赔偿),设这两辆车在一年内发生此种事故的概率分别为和,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为(结果用最简分数表示)8.(5分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),则直线l与椭圆C的公共点坐标为9.(5分)设函数f(x)=logmx(m>0且m≠1),若m是等比数列{an}(n∈N*)的公比,且f(a2a4a6..a2018)=7,则f(a)+f(a)+f(a)小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com+…f(a)的值为10.(5分)设变量x、y满足条件,若该条件表示的平面区域是三角形,则实数m的取值范围是11.(5分)设M={y|y=()x,x∈R},N={y|y=(+1)(x1﹣)+(|m|﹣1)(x2﹣),1≤x≤2},若N⊆M,则实数m的取值范围是12.(5分)点F1、F2分别是椭圆C:的左、右焦点,点N为椭圆C的上顶点,若动点M满足:||2=2,则||的最大值为二.选择题(本大题共4题,每题5分,共20分)13.(5分)已知i为虚数单位,若复数(a+i)2i为正实数,则实数a的值为()A.2B.1C.0D.﹣114.(5分)如图所示的几何体,其表面积为(5+)π,下部圆柱的底面直径与该圆柱的高相等,上部圆锥的母线长为,则该几何体的主视图的面积为()A.4B.6C.8D.1015.(5分)设Sn是无穷等差数列{an}前n项和(n∈N*),则“Sn存在”是“该数列公差d=0”的()条件A.充分非必要B.必要非充分C.充分必要D.既非充分也非必要小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com16.(5分)已知k∈N*,x,y,z∈R+,若k(xy+yz+zx)>5(x2+y2+z2),则对此不等式描述正确的是()A.若k=5,则至少存在一个以x、y、z为边长的等边三角形B.若k=6,则对任意满足不等式的x、y、z,都存在以x、y、z为边长的三角形C.若k=7,则对任意满足不等式的x、y、z,都存在以x、y、z为边长的三角形D.若k=8,则对满足不等式的x、y、z,不存在以x、y、z为边长的直角三角形三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示的正四棱柱ABCDA﹣1B1C1D1的底面边长为1,侧棱AA1=2,点E在棱CC1上,且=(λ>0).(1)当时,求三棱锥D1=EBC的体积;(2)当异面直线BE与D1C所成角的大小为arccos时,求λ的值.18.(14分)已知函数f(x)=sinxcosx+sin2x,x∈R.(1)若函数f(x)在区间[a,]上递增,求实数a的取值范围;(2)若函数f(x)的图象关于点Q(x1,y1)对称,且x1∈[﹣],求点Q的坐标.19.(14分)某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图所示,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为5,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com点G的位置?20.(16分)定义在R上的函数f(x)满足:对任意的实数x,存在...