2015年上海市闵行区高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.(4分)已知集合A={x||x﹣|>},U=R,则∁UA=.2.(4分)若复数z满足(z+2)(1+i)=2i(i为虚数单位),则z=.3.(4分)函数f(x)=xcosx,若f(a)=,则f(﹣a)=.4.(4分)计算=.5.(4分)设f(x)=4x2﹣x+1(x≥0),则f1﹣(0)=.6.(4分)已知θ∈(,π),sincos﹣=,则cosθ=.7.(4分)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.8.(4分)已知集合M={1,3},在M中可重复的依次取出三个数a,b,c,则“以a,b,c为边长恰好构成三角形”的概率是.9.(4分)已知等边△ABC的边长为3,M是△ABC的外接圆上的动点,则的最大值为.10.(4分)函数y=|2x|+|x|取最小值时x的取值范围是.11.(4分)已知函数f(x)=()x,g(x)=x,记函数h(x)=,则函数F(x)=h(x)+x5﹣所有零点的和为.12.(4分)已知F1、F2是椭圆Γ1:=1和双曲线Γ2:=1的公共焦点,P是它们的一个公共点,且∠F1PF2=,则mn的最大值为.13.(4分)在△ABC中,记角A、B、C所对边的边长分别为a、b、c,设S是小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com△ABC的面积,若2SsinA<(•)sinB,则下列结论中:①a2<b2+c2;②c2>a2+b2;③cosBcosC>sinBsinC;④△ABC是钝角三角形.其中正确结论的序号是.14.(4分)已知数列{an}满足:对任意n∈N*均有an+1=pan+3p3﹣(p为常数,p≠0且p≠1),若a2,a3,a4,a5∈{19﹣,﹣7,﹣3,5,10,29},则a1所有可能值的集合为.二.选择题(本大题满分20分)本大题共有4小题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,选对得5分,否则一律得0分.15.(5分)已知圆O:x2+y2=1和直线l:y=kx+,则k=1是圆O与直线l相切的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件16.(5分)(2﹣)8展开式中各项系数的和为()A.﹣1B.1C.256D.﹣25617.(5分)已知y=f(x)是定义在R上的函数,下列命题正确的是()A.若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在(a,b)内有零点,则有f(a)•f(b)<0B.若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)•f(b)>0,则其在(a,b)内没有零点C.若f(x)在区间(a,b)上的图象是一条连续不断的曲线,且有f(a)•f(b)<0,则其在(a,b)内有零点D.如果函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)•f(b)<0,则其在(a,b)内有零点18.(5分)数列{an}是公差不为零的等差数列,其前n项和为Sn,若记数据a1,a2,a3,…,a2015的方差为λ1,数据的方差为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comλ2,k=.则()A.k=4.B.k=2.C.k=1.D.k的值与公差d的大小有关.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在直三棱柱ABCA﹣1B1C1中,∠ACB=90°,AC=BC=2,直线A1B与平面BB1C1C所成角的大小为arctan.求三棱锥C1A﹣1BC的体积.20.(14分)某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲x万件并全部售完,每一万件的销售收入为R(x)万元,且R(x)=﹣,10<x<100,该公司在电饭煲的生产中所获年利润W(万元).(注:利润=销售收入﹣成本)(1)写出年利润W(万元)关于年产量x(万件)的函数解析式;(2)为了让年利润W不低于2760万元,求年产量x的取值范围.21.(14分)椭圆Γ:+=1(a>b>0)的左右焦点分别为F1、F2,上顶点为A,已知椭圆Γ过点P(,),且•=0.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求椭圆Γ的方程;(2)若椭圆上两点C、D关于点M(1,)对称,求|CD|.22.(16分)已知函数f(x)...