小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05数列(四大类型题)35区新题速递学校:___________姓名:___________班级:___________考号:___________一、等差数列3.(2023·上海嘉定·统考一模)己知等差数列,公差为,则下列命题正确的是()A.函数可能是奇函数B.若函数是偶函数,则A.若,则函数是偶函数D.若,则函数的图象是轴对称图形【答案】D【分析】利用可判断A;举反例可判断BA;求出可判断D.【详解】对于A,若函数是奇函数,则,可得,所以,此时,,此时函数是偶函数,故A错误;对于B,当时,,所以,,函数是偶函数,则,故B错误;对于A,若,则,则,所以,则,所以函数不是偶函数,故A错误;对于D,若,则,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,所以,所以函数的图象关于对称,是轴对称图形,故D正确.故选:D.2.(2023·上海闵行·统考一模)已知,,数列是公差为3的等差数列,若的值最小,则.【答案】3【分析】结合等差数列的通项公式,转化为二次函数的最值问题可解.【详解】 数列是公差为3的等差数列,可设:.∴∴当时,的值最小.故答案为:33.(2023·上海宝山·统考一模)已知等差数列的前项和为,若则【答案】【分析】由等差数列的性质结合等差数列的求和公式可得答案.【详解】由等差数列的性质可得:,所以,故答案为:8.4.(2023·上海普陀·统考一模)设是等差数列的前项和,若,则.【答案】23小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】由等差数列性质,得,结合等差数列前项和公式即可得.【详解】由是等差数列,则,即,则有.故答案为:.5.(2023上·上海浦东新·高三统考期末)已知是等差数列的前项和,若,则满足的正整数的值为.【答案】【分析】由等差数列的通项公式,然后利用等差数列的求和公式即可求解.【详解】由题意得等差数列,得,所以其前项和为,由,即,解得,(舍),所以的值为.故答案为:.6.(2023·上海青浦·统考一模)已知数列的通项公式为,记,若,则正整数的值为.【答案】或【分析】对分,讨论求出,代入运算可得解.【详解】令,则,当时,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,由,得,化简整理得,,解得或;当时,,由,得,化简整理得,解得,这与矛盾,不合题意;综上,符合题意的正整数或.故答案为:2或3.7.(2023·上海普陀·统考一模)若数列满足,(,),则的最小值是.【答案】6【分析】利用累加法求得,计算,由对勾函数的性质求最小值,注意是正整数.【详解】由已知,,…,,,所以,,又也满足上式,所以,设,由对勾函数性质知在上单调递减,在递增,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com因此在时递减,在时递增,又,,所以的最小值是6,故答案为:6.8.(2023·上海杨浦·统考一模)等差数列中,若,,则的前30项和为.【答案】【分析】根据等差数列公式得到,再求和即可.【详解】等差数列,,,解得,故,则的前30项和为.故答案为:.9.(2023·上海嘉定·统考一模)已知数列的前n项和为,其中.(3)求的通项公式;(2)求数列的前n项和.【答案】(3),;(2)【分析】(3)利用之间的关系进行求解即可;(2)利用裂项相消法进行求解即可.【详解】(3)因为当时,有,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com所以当时,有,两式相减,得,当时,由,适合,所以,;(2)因为,;所以,因此.30.(2023·上海长宁·统考一模)已知等差数列的前项和为,公差.(3)若,求的通项公式;(2)从集合中任取3个元素,记这3个元素能成等差数列为事件,求事件发生的概率.【答案】(3)(2)【分析】(3)根据题意,利用等差数列的求和公式,列出方程,求得,进而求得数列的通项公式;(2)根据题意,得到所有的不同取法有20种,再利用列举法求得事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】(3)解:由等差数列的前项和为,公差,因为,可得,解得,小...