专题02三角形中的倒角模型之燕尾(飞镖)型、风筝模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。熟悉这些模型可以快速得到角的关系,求出所需的角。本专题就燕尾(飞镖)型、风筝(鹰爪)、翻角模型进行梳理及对应试题分析,方便掌握。大家在掌握几何模型时,多数同学会注重模型结论,而忽视几何模型的证明思路及方法,导致本末倒置。要知道数学题目的考察不是一成不变的,学数学更不能死记硬背,要在理解的基础之上再记忆,这样才能做到对于所学知识的灵活运用,并且更多时候能够启发我们解决问题的关键就是基于已有知识、方法的思路的适当延伸、拓展,所以学生在学习几何模型要能够做到的就是:①认识几何模型并能够从题目中提炼识别几何模型;②记住结论,但更为关键的是记住证明思路及方法;③明白模型中常见的易错点,因为多数题目考察的方面均源自于易错点。当然,以上三点均属于基础要求,因为题目的多变性,若想在几何学习中突出,还需做到的是,在平时的学习过程中通过大题量的训练,深刻认识几何模型,认真理解每一个题型,做到活学活用!.................................................................................................................................................1模型1.飞镖模型(燕尾)模型.......................................................................................................................1模型2.风筝(鹰爪)模型...............................................................................................................................5模型3.角内(外)翻模型...............................................................................................................................7.................................................................................................................................................9模型1.飞镖模型(燕尾)模型飞镖(燕尾)模型看起来特别简单,在复杂几何图形倒角时往往有巧妙的作用。因为模型像飞镖(回旋镖)或燕尾,所以我们称为飞镖(燕尾)模型。图1图2图3基本模型:条件:如图1,凹四边形ABCD;结论:①;②。证明:连接AC并延长至点P;在△ABC中,∠BCP=∠BAC+∠B;在△ACD中,∠DCP=∠CAD+∠D;又 ∠BAD=∠BAC+∠DAC,∠BCD=∠BCP+∠DCP;∴∠BAD+∠B+∠D=∠BCD。延长BC交AD于点P;在△ABQ中,;在△CDQ中,。即:,故。拓展模型1:条件:如图2,BO平分∠ABC,OD平分∠ADC;结论:∠O=(∠A+∠C)。证明: BO平分∠ABC,OD平分∠ADC;∴∠ABO=∠ABC;∠ADO=∠ADC;根据飞镖模型:∠BOD=∠ABO+∠ADO+∠A=∠ABC+∠ADC+∠A;∠BCD=∠ABC+∠ADC+∠A;∴2∠BOD=∠ABC+∠ADC+2∠A=∠BCD+∠A;即∠O=(∠A+∠C)。拓展模型2:条件:如图3,AO平分∠DAB,CO平分∠BCD;结论:∠O=(∠D-∠B)。证明:根据飞镖模型:=++,∴∠DCB-∠DAB=∠D+∠B, AO平分∠DAB,CO平分∠BCD,∴∠DCO=∠DCB,∠DAO=∠DAB,∴∠DCO-∠DAO=(∠DCB-∠DAB)=(∠D+∠B), ∠DEA=∠OEC,∴∠D+∠DAO=∠O+∠DCO,∴∠D-∠O=∠DCO-∠DAO,∴∠D-∠O=(∠D+∠B),即∠O=(∠D-∠B)例1.(2023·福建南平·八年级校考阶段练习)请阅读下列材料,并完成相应的任务:有趣的“飞镖图”.如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”逃去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连结AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又:在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如图3,连结CD并延长至F, ∠1和∠3分别是△ACD和△BCD的一个...