专题33最值模型之胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。.................................................................................................................................................1模型1.胡不归模型(最值模型)...................................................................................................................1...............................................................................................................................................13模型1.胡不归模型(最值模型)从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.V1V2V1驿道砂石地ABC一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.(注意与阿氏圆模型的区分)。V2V1MNCBACH=kACsinα=CHAC=kHDαABCNMMNCBAαDH1),记,即求BC+kAC的最小值.2)构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.3)过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。【最值原理】垂线段最短。例1.(24-25九年级上·安徽合肥·阶段练习)如图,在中,,,P为边上的一个动点(不与A、C重合),连接,则的最小值是()A.B.C.D.8例2.(23-24九年级上·湖南娄底·阶段练习)如图,在矩形中,,E,P分别是边和对角线上的动点,连接,记,若,则的最小值为()A.3B.4C.5D.例3.(2024·陕西渭南·二模)如图,在菱形中,对角线相交于点,,,是对角线上的动点,则的最小值为.例4.(2023·云南昆明·统考二模)如图,正方形边长为4,点E是边上一点,且.P是对角线上一动点,则的最小值为()A.4B.C.D.例5.(23-24九年级上·江苏南通·阶段练习)如图,是的直径,切于点交的延长线于点.设点是弦上任意一点(不含端点),若,,则的最小值为()A.B.C.D.例7.(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是.例8.(2024·山东济南·一模)实践与探究【问题情境】(1)①如图1,,,,分别为边上的点,,且,则______;②如图2,将①中的绕点顺时针旋转,则所在直线较小夹角的度数为______.【探究实践】(2)如图3,矩形,,,为边上的动点,为边上的动点,,连接,作于点,连接.当的长度最小时,求的长.【拓展应用】(3)如图4,,,,,为中点,连接,分别为线段上的动点,且,请直接写出的最小值.例9.(24-25九年级上·江苏苏州·阶段练习)如图,二次函数的图象交x轴于A、B两点,交y轴于点C,连接.(1)直接写出点B、C的坐标,B________;C________.(2)点P是y轴右侧抛物线上的一点,连接、.若的面积,求点P的坐标.(3)设E为线段上任意一点(不含端点),连接,一动点M从点A出发,沿线段以每秒1个单位速度运动到E点,再沿线段以每秒2个单位的速度运动到C后停止,求点M运动时间的最小值.1.(2024·山东淄博·校考一模)如图,在平面直角坐标系中,点A的坐标是,点C的坐标是,点是x轴上的动点,点B在x轴上移动时...