1/158.1平方根第3课时一、教学目标【知识与技能】1.了解平方根的概念,掌握平方根的特征.2.能正确区分平方根与算术平方根的意义.3.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根.【过程与方法】类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.【情感态度与价值观】使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.二、课型2/15新授课三、课时第3课时共3课时四、教学重难点【教学重点】理解平方根概念,会用符号表示一个正数的平方根.【教学难点】理解平方根的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)1.什么叫做算术平方根?如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.2.判断下列各数有没有算术平方根,如果有,请求出它们的算3/15术平方根.100;1;36121;0;-0.0025;(-3)2;-25.3.填空:(1)3²=_______,(-3)²=_______;(2)(23)2=¿¿,=(−23)2=¿¿;(3)0.8²=_______,(-0.8)²=_______.反过来,如果已知一个数的平方,怎样求这个数?(二)探索新知1.出示课件5-9,探究平方根的概念及性质教师问:要做一张边长是3分米的方桌面,它的面积是多少?学生答:它的面积是9平方分米.教师问:这个问题实际上就是求:32=?这是已知底数和指数,求幂的运算.这是什么运算?学生答:这是乘方运算.4/15教师问:反过来,要做一张面积是9平方分米的方桌面,它的边长是多少分米?学生答:它的边长是3分米.教师问:实际上就是要求出一个数,使它的平方等于9,即:()2=9,应该填什么呢?学生答:显然,括号里应是±3.教师问:桌子的边长为何是3分米?学生答:-3不符题意.∴方桌面的边长应是3分米.教师问:你还能得到什么问题呢?学生问:如果一个数的平方等于9,这个数是多少?教师答:由于(±3)2=9,所以这个数是3或-3.教师问:想一想:3和-3有什么特征?学生答:3和-3互为相反数,只有符号不同.5/15教师问:3和-3互为相反数,会不会是巧合呢?学生答:猜想不一定是巧合,需要实例吧!做一做,想一想:(1)4的平方等于16,那么16的算术平方根就是_____.(2)25的平方等于425,那么425的算术平方根就是____.(3)展厅地面为正方形,其面积是49m2,则其边长为___m.教师依次展示学生的答案:学生1答:(1)16的算术平方根就是4.学生2答:(2)425的算术平方根就是25.学生3答:(3)其边长为7m.教师总结如下:答案如下:(1)4;(2)25;(3)7.教师问:平方等于16,425,49的数还有吗?学生答:还有-4,-25,-7.教师问:填一填,想一想:写出左圈和右圈中的“?”表示的数:6/15学生答:如下图所示:总结点拨:(出示课件10)根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念:定义:如果有一个数x,使得x²=a,那么我们把x叫作a的一个平方根,也叫作二次方根.例如:(±1)2=1,1的平方根为±1.平方根的性质:如果x是正数a的一个平方根,那么a的平方7/15根有且只有两个:x与-x.即平方根互为相反数.教师问:121的平方根是什么?(出示课件11)学生答:121的平方根是±11.教师问:0的平方根是什么?学生答:0的平方根是0.教师问:1649的平方根是什么?学生答:1649的平方根是±47.教师问:-9有没有平方根?为什么?学生答:没有,因为一个数的平方不可能是负数.教师问:通过这些题目的解答,你能发现什么?(出示课件12)学生答:有些数有两个平方根,有些数有一个平方根,有些数没有平方根.教师问:正数有几个平方根?学生答:正数有2个平方根.教师问:0有几个平方根?学生答:0有1个平方根.8/15教师问:有没有一个数的平方是负数?学生答:没有一个数的平方是负数.教师问:负数有几个平方根呢?学生答:负数没有平方根.教师问:为何负数没有平方根呢?学生答:因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根.总结点拨:(出示课件13)平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根.考...