1/1611.1.1不等式及其解集一、教学目标【知识与技能】1.了解不等式概念和不等式的解.2.理解不等式的解集,能正确表示不等式的解集.3.培养数感,渗透数形结合的思想.【过程与方法】1.通过小组合作培养学生观察、分析、比较的能力2.能正确表示不等式的解集,初步掌握数形结合的思想方法3.小组合作辨析不等式的解集和不等式的解的区别和联系【情感态度与价值观】经历把实际问题抽象为不等式的过程,能够列出不等式,初步体会不等式是刻画现实世界中不等式关系的一种有效的数学模型,培养学生的建模意识.二、课型新授课三、课时2/161课时四、教学重难点【教学重点】把不等式的解集正确地表示到数轴上.【教学难点】正确理解不等式的解集的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)很多人在自己的童年生活中,都做过跷跷板的游戏,当一个大人和一个小孩同时坐上等臂长的跷跷板的两边时会发生什么现象呢?3/16(二)探索新知1.出示课件4-9,探究不等式的概念教师问:现实生活中,数量之间存在着相等与不相等的关系.例如,小明的身高为155cm,小聪的身高为156cm,则我们可以用不等号“>”或“<”来表示他们的身高之间的关系.你能表示出来吗?学生答:例如:156>155或155<156.教师问:如图所示,处于平衡状态的托盘天平的右盘放上一质量为50g的砝码,左盘放上一个圆球后向左倾斜,问圆球的质量xg与4/16质量为50g的砝码之间具有怎样关系?学生答:我们很容易知道圆球的质量大于砝码的质量,即x>50.教师问:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?师生一起解答:分析:设车速是x千米/时,5/16从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到23小时,即50x<23①从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶23小时的路程要超过50千米,即23x>50,②教师出示问题:想一想:下列式子有什么区别?(1)50x<23;(2)23x>50;(3)x≠50;(4)x=5;(5)x≥9;(6)x≤10教师依次展示学生答案:学生1答:只有(4)的式子里含有“=”符号.学生2答:除了(4)的式子里含有“>”或“<”或“≥”或“≤”或“≠”符号.教师总结如下:区别:①只有(4)的式子里含有“=”符号;②除了(4)的式子里含有“>”或“<”或“≥”或“≤”或“≠”符号;教师问:观察50x<23,23x>50,x≥9,x≠50,x≤10想一想它们有什么共同点?6/16学生答:共同点:①式子里没有“=”号;②式子里含有不是“=”的符号.教师问:像上面的式子叫做不等式,你能给不等式的定义吗?学生答:表示不等关系的式子叫做不等式.总结点拨:用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.考点1:不等式的识别判断下列式子是不是不等式:(出示课件10)①-1<3;②-x+2=4;③3x≠4y;④6>2;⑤2x-3;⑥2m<n.师生共同讨论后解答如下:解析:②是等式,⑤是代数式,没有不等关系,所以不是不等式.不等式有①③④⑥,共4个.7/16总结点拨:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.出示课件11,学生自主练习后口答,教师订正.考点2:用不等式表示数量关系用不等式表示:(出示课件12)(1)a与1的和是正数;(2)y的2倍与1的和小于3;(3)y的3倍与x的2倍的和是非负数(4)x乘以3的积加上2最多为5.学生独立思考后,师生共同分析后解答.教师依次展示学生答案:学生1解:(1)a+1>0;学生2解:(2)2y+1<3;学生3解:(3)3y+2x≥0;学生4解:(4)3x+2≤5.出示课件13,学生自主练习后口答,教师订正.8/162.出示课件14-17,探究不等式的解和解集教师问:下面给出的数中,能使不等式x>50成立吗?20,40,50,100.教师依次展示学生答案:学生1答:当x=20,20<50,不成立;学生2答:当x=40,40<50,不成立;学生3答:当x=50,50=50,不成立;学生4答:当x=100,100>50,成立.教师问:你还能找出其他的数吗?学生答:能,例如x=60时,60>50,成立.教师问:我们...