小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题19解三角形大题综合考点十年考情(2015-2024)命题趋势考点1求面积的值及范围或最值(10年7考)2024·北京卷、2023·全国甲卷、2023·全国乙卷2022·浙江卷、2019·全国卷、2017·全国卷2016·全国卷、2015·浙江卷、2015·全国卷2015·山东卷掌握正弦定理、余弦定理及其相关变形应用,会用三角形的面积公式解决与面积有关的计算问题,会用正弦定理、余弦定理等知识和方法解决三角形中的综合问题,会利用基本不等式和相关函数性质解决三角形中的最值及范围问题本节内容是新高考卷的必考内容,一般给以大题来命题、考查正余弦定理和三角形面积公式在解三角形中的应用,同时也结合三角函数及三角恒等变换等知识点进行综合考查,也常结合基本不等式和相关函数性质等知识点求解范围及最值,需重点复习。考点2求边长、周长的值及范围或最值(10年8考)2024·全国新Ⅱ卷、2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2022·全国新Ⅱ卷、2022·全国乙卷、2022·北京卷、2022·全国新Ⅰ卷、2020·全国卷、2020·全国卷、2018·全国卷、2017·全国卷、2017·山东卷2017·全国卷、2016·全国卷、2015·浙江卷2015·山东卷考点3求角和三角函数的值及范围或最值(10年10考)2024·天津卷、2023·天津卷、2022·天津卷、2021·天津卷、2021·全国新Ⅰ卷、2020·天津卷2020·浙江卷、2020·江苏卷、2019·江苏卷2019·北京卷、2019·全国卷、2018·天津卷2017·天津卷、2017·天津卷、2016·四川卷2016·浙江卷、2016·浙江卷、2016·天津卷2016·北京卷、2016·山东卷、2016·四川卷2016·江苏卷、2015·江苏卷、2015·天津卷2015·四川卷、2015·湖南卷、2015·湖南卷2015·全国卷考点4求三角形的高、中线、角平分线及其他线段长(10年几考)2023·全国新Ⅰ卷、2018·北京卷、2018·全国卷2015·安徽卷、2015·全国卷考点5三角形中的证明问题2022·全国乙卷、2021·全国新Ⅰ卷、2016·四川卷小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(10年4考)2016·浙江卷、2016·山东卷、2016·四川卷2015·湖南卷考点01求面积的值及范围或最值1.(2024·北京·高考真题)在中,内角的对边分别为,为钝角,,.(1)求;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.条件①:;条件②:;条件③:.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1);(2)选择①无解;选择②和③△ABC面积均为.【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得,结合(1)问答案即可排除;选择②,首先求出,再代入式子得,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;选择③,首先得到,再利用正弦定理得到,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;【详解】(1)由题意得,因为为钝角,则,则,则,解得,因为为钝角,则.(2)选择①,则,因为,则为锐角,则,此时,不合题意,舍弃;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com选择②,因为为三角形内角,则,则代入得,解得,,则.选择③,则有,解得,则由正弦定理得,即,解得,因为为三角形内角,则,则,则2.(2023·全国甲卷·高考真题)记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1)(2)【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【详解】(1)因为,所以,解得:.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(2)由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.3.(2023·全国乙卷·高考真题)在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.【答案】(1);(2).【分析】(1)首先由余弦定理求得边长的值为,然后由余弦定理可得,最后由同角三角函数基本关系可得;(2)由题意可得,则,据此即可求得的面...