2014年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3iB.﹣13i﹣C.1+3iD.13i﹣【考点】A1:虚数单位i、复数;A5:复数的运算.菁优网版权所有【专题】5N:数系的扩充和复数.【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解: z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x23x4﹣﹣<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[1﹣,0)D.(﹣1,0]【考点】1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x23x4﹣﹣<0,得﹣1<x<4.∴M={x|x23x4﹣﹣<0}={x|1﹣<x<4},又N={x|0≤x≤5},∴M∩N={x|1﹣<x<4}∩{x|0≤x≤5}=[0,4).故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b【考点】HF:正切函数的单调性和周期性.菁优网版权所有【专题】56:三角函数的求值.【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°35°﹣)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】5A:平面向量及应用.【分析】由条件利用两个向量垂直的性质,可得(+•)=0,(2+•)=0,由此求得||.【解答】解:由题意可得,(+•)=+=1+=0,∴=1﹣;(2+•)=2+=2﹣+=0,∴b2=2,则||=,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.菁优网版权所有【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解: △AF1B的周长为4, △AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=, 离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xex1﹣在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1【考点】62:导数及其几何意义.菁优网版权所有【专题】52:导数的概念及应用.【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=ex1﹣+xex1﹣=(1+x)ex1﹣,当x=1时,f′(1)=2,即曲...