2017Ⅲ年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.0【考点】1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】解不等式组求出元素的个数即可.【解答】解:由,解得:或,∴A∩B的元素的个数是2个,故选:B.【点评】本题考查了集合的运算,是一道基础题.2.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.2【考点】A8:复数的模.菁优网版权所有【专题】35:转化思想;5N:数系的扩充和复数.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解: (1+i)z=2i,∴(1i﹣)(1+i)z=2i(1i﹣),z=i+1.则|z|=.故选:C.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com能力,属于基础题.3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【考点】2K:命题的真假判断与应用;B9:频率分布折线图、密度曲线.菁优网版权所有【专题】27:图表型;2A:探究型;5I:概率与统计.【分析】根据已知中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案.【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【点评】本题考查的知识点是数据的分析,命题的真假判断与应用,难度不大,属于基础题.4.(5分)(x+y)(2xy﹣)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.80【考点】DA:二项式定理.菁优网版权所有【专题】34:方程思想;5P:二项式定理.【分析】(2xy﹣)5的展开式的通项公式:Tr+1=(2x)5r﹣(﹣y)r=25r﹣(﹣1)rx5r﹣yr.令5r=2﹣,r=3,解得r=3.令5r=3﹣,r=2,解得r=2.即可得出.【解答】解:(2xy﹣)5的展开式的通项公式:Tr+1=(2x)5r﹣(﹣y)r=25r﹣(﹣1)rx5r﹣yr.令5r=2﹣,r=3,解得r=3.令5r=3﹣,r=2,解得r=2.∴(x+y)(2xy﹣)5的展开式中的x3y3系数=22×(﹣1)3+23×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.5.(5分)已知双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.﹣=1B.﹣=1C.﹣=1D.﹣=1【考点】KC:双曲线的性质.菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.【解答】解:椭圆+=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,可得,即,可得=,解得a=2,b=,所求的双曲线方程为:﹣=1.故选:B.【点评】本题考查椭圆与双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零...