2014年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}【考点】1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】直接利用交集的运算得答案.【解答】解: A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.【点评】本题考查交集及其运算,是基础题.2.(5分)下列函数中,定义域是R且为增函数的是()A.y=ex﹣B.y=xC.y=lnxD.y=|x|【考点】3E:函数单调性的性质与判断.菁优网版权所有【专题】51:函数的性质及应用.【分析】根据函数单调性的性质和函数成立的条件,即可得到结论.【解答】解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【点评】本题主要考查函数定义域和单调性的判断,比较基础.3.(5分)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)【考点】9J:平面向量的坐标运算.菁优网版权所有【专题】5A:平面向量及应用.【分析】直接利用平面向量的数乘及坐标减法运算得答案.【解答】解:由=(2,4),=(﹣1,1),得:2﹣=2(2,4)﹣(﹣1,1)=(4,8)﹣(﹣1,1)=(5,7).故选:A.【点评】本题考查平面向量的数乘及坐标减法运算,是基础的计算题.4.(5分)执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.15【考点】EF:程序框图.菁优网版权所有【专题】5K:算法和程序框图.【分析】算法的功能是求S=1+21+22+…+2k的值,根据条件确定跳出循环的k值,计算输出的S值.【解答】解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值, 跳出循环的k值为3,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴输出S=1+2+4=7.故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.5.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.菁优网版权所有【专题】5L:简易逻辑.【分析】本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的理解.【解答】解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.故选:D.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.6.(5分)已知函数f(x)=log﹣2x,在下列区间中,包含f(x)零点的区间是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【考点】52:函数零点的判定定理.菁优网版权所有【专题】51:函数的性质及应用.【分析】可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.【解答】解: f(x)=log﹣2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x...