专题06 立体几何(解答题)(解析版).docx本文件免费下载 【共49页】

专题06 立体几何(解答题)(解析版).docx
专题06 立体几何(解答题)(解析版).docx
专题06 立体几何(解答题)(解析版).docx
1五年(2019-2023)年高考真题分项汇编专题05立体几何(解答题)立体几何在理科数解答题中一般出现在20题左右的位置。主要考查空间几何体对应的空间角问题,考查二面角的频率比较大。1.(2023·全国·新课标Ⅰ卷)如图,在正四棱柱中,.点分别在棱,上,.(1)证明:;(2)点在棱上,当二面角为时,求.【答案】(1)证明见解析;(2)1【分析】(1)建立空间直角坐标系,利用向量坐标相等证明;(2)设,利用向量法求二面角,建立方程求出即可得解.【详解】(1)以为坐标原点,所在直线为轴建立空间直角坐标系,如图,2则,,,又不在同一条直线上,.(2)设,则,设平面的法向量,则,令,得,,设平面的法向量,则,令,得,,,化简可得,,解得或,或,3.2.(20203全国·统考新课标Ⅱ卷)如图,三棱锥中,,,,E为BC的中点.(1)证明:;(2)点F满足,求二面角的正弦值.【答案】(1)证明见解析;(2).【分析】(1)根据题意易证平面,从而证得;(2)由题可证平面,所以以点为原点,所在直线分别为轴,建立空间直角坐标系,再求出平面的一个法向量,根据二面角的向量公式以及同角三角函数关系即可解出.【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,设平面与平面的一个法向量分别为,4二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而.所以二面角的正弦值为.3.(2023·全国·统考高考乙卷)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.(2)法一:由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.法二:过点作轴平面,建立如图所示的空间直角坐标系,设,所以由求出点坐标,再5求出平面与平面BEF的法向量,由即可证明;(3)法一:由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.法二:求出平面与平面的法向量,由二面角的向量公式求解即可.【详解】(1)连接,设,则,,,则,解得,则为的中点,由分别为的中点,于是,即,则四边形为平行四边形,,又平面平面,所以平面.(2)法一:由(1)可知,则,得,因此,则,有,又,平面,则有平面,又平面,所以平面平面.法二:因为,过点作轴平面,建立如图所示的空间直角坐标系,,在中,,在中,,6设,所以由可得:,可得:,所以,则,所以,,设平面的法向量为,则,得,令,则,所以,设平面的法向量为,则,得,令,则,所以,,所以平面平面BEF;(3)法一:过点作交于点,设,由,得,且,7又由(2)知,,则为二面角的平面角,因为分别为的中点,因此为的重心,即有,又,即有,,解得,同理得,于是,即有,则,从而,,在中,,于是,,所以二面角的正弦值为.法二:平面的法向量为,平面的法向量为,所以,因为,所以,故二面角的正弦值为.4.(2023·全国·统考高考甲卷)如图,在三棱柱中,底面ABC,8,到平面的距离为1.(1)证明:;(2)已知与的距离为2,求与平面所成角的正弦值.【答案】(1)证明见解析(2)【分析】(1)根据线面垂直,面面垂直的判定与性质定理可得平面,再由勾股定理求出为中点,即可得证;(2)利用直角三角形求出的长及点到面的距离,根据线面角定义直接可得正弦值.【详解】(1)如图,底面,面,,又,平面,,平面ACC1A1,又平面,平面平面,过作交于,又平面平面,平面,平面到平面的距离为1,,在中,,9设,则,为直角三角形,且,,,,,解得,,(2),,过B作,交于D,则为中点,由直线与距离为2,所以,,,在,,延长,使,连接,由知四边形为平行四边形,,平面,又平面,则在中,,,在中,,,,又到平面距离也为1,所以与平面所成角的正弦值为.5.(2022·全国·统考高考乙卷...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
辽宁省沈阳市浑南区东北育才学校2022-2023学年高二下学期第一次(4月)月考数学试题.pdf
辽宁省沈阳市浑南区东北育才学校2022-2023学年高二下学期第一次(4月)月考数学试题.pdf
免费
25下载
2017年高考数学真题(文科)(新课标Ⅲ)(解析版).doc
2017年高考数学真题(文科)(新课标Ⅲ)(解析版).doc
免费
29下载
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD  课时作业(二十三).docx
高中数学·选择性必修·第一册·(RJ-A版)课时作业WORD 课时作业(二十三).docx
免费
5下载
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word)  课时作业(十三) 点到直线的距离.docx
高中数学·选择性必修·第一册·(RJ-B版)课时作业(word) 课时作业(十三) 点到直线的距离.docx
免费
6下载
高中数学·选择性必修·第一册·湘教版课时作业word  课时作业(十三) 直线的点斜式方程.docx
高中数学·选择性必修·第一册·湘教版课时作业word 课时作业(十三) 直线的点斜式方程.docx
免费
14下载
2013年高考数学试卷(理)(重庆)(解析卷).doc
2013年高考数学试卷(理)(重庆)(解析卷).doc
免费
0下载
2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科).doc
2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科).doc
免费
0下载
二轮专项分层特训卷··高三数学·文科概率(7).doc
二轮专项分层特训卷··高三数学·文科概率(7).doc
免费
24下载
【高考数学】备战2024年(新高考专用)专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
【高考数学】备战2024年(新高考专用)专题03 不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
高中数学(必修第二册)(BSD版)课时作业(word)  课时作业9.doc
高中数学(必修第二册)(BSD版)课时作业(word) 课时作业9.doc
免费
12下载
2023江西高一联考-数学.pdf
2023江西高一联考-数学.pdf
免费
29下载
1992年湖南高考文科数学真题及答案.doc
1992年湖南高考文科数学真题及答案.doc
免费
27下载
2023年高考数学试卷(上海)(秋考)(空白卷).doc
2023年高考数学试卷(上海)(秋考)(空白卷).doc
免费
0下载
精品解析:上海市普陀区2024届高考一模数学试题(解析版).docx
精品解析:上海市普陀区2024届高考一模数学试题(解析版).docx
免费
0下载
2009年高考数学试卷(江苏)(空白卷).doc
2009年高考数学试卷(江苏)(空白卷).doc
免费
0下载
2015年高考数学试卷(文)(湖北)(空白卷).doc
2015年高考数学试卷(文)(湖北)(空白卷).doc
免费
0下载
高中数学·选择性必修·第二册·湘教版课时作业WORD  章末过关检测(二).docx
高中数学·选择性必修·第二册·湘教版课时作业WORD 章末过关检测(二).docx
免费
17下载
上海市黄浦区2020年高三第一学期期末(一模)数学答案.doc
上海市黄浦区2020年高三第一学期期末(一模)数学答案.doc
免费
0下载
高中数学·必修第四册·RJ-B课时作业(word)  课时作业 17.docx
高中数学·必修第四册·RJ-B课时作业(word) 课时作业 17.docx
免费
8下载
2012年高考数学试卷(理)(天津)(解析卷).doc
2012年高考数学试卷(理)(天津)(解析卷).doc
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群