课时作业(五十一)正态分布[练基础]1.设随机变量ξ服从正态分布N(4,3),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()A.B.C.5D.32.若随机变量X的密度函数为f(x)=·e-,X在区间(-2,-1)和(1,2)内取值的概率分别为p1,p2,则p1,p2的关系为()A.p1>p2B.p1<p2C.p1=p2D.不确定3.某厂生产的零件外径ξ~N(10,0.04),今从该厂上午、下午生产的零件中各取一件,测得其外径分别为9.9cm,9.3cm,则可认为()A.上午生产情况正常,下午生产情况异常B.上午生产情况异常,下午生产情况正常C.上午、下午生产情况均正常D.上午、下午生产情况均异常4.已知随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,则P(2≤ξ<4)等于()A.0.3B.0.35C.0.5D.0.75.某商场经营的某种包装的大米质量ξ(单位:kg)服从正态分布N(10,σ2),根据检测结果可知P(9.9≤ξ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1000名职工,则分发到的大米质量在9.9kg以下的职工数大约为()A.10B.20C.30D.406.[多选题]已知在某市的一次学情检测中,学生的数学成绩X服从正态分布N(105,100),其中90分为及格线,120分为优秀线,下列说法正确的是()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.A.该市学生数学成绩的期望为105B.该市学生数学成绩的标准差为100C.该市学生数学成绩及格率超过0.99D.该市学生数学成绩不及格的人数和优秀的人数大致相等7.已知随机变量落在区间(0.2,+∞)内的概率为0.5,那么相应的正态曲线f(x)在x=________时达到最高点.8.若随机变量ξ服从正态分布N(μ,σ2),P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,设ξ~N(1,σ2),且P(ξ≥3)=0.1587,则σ=________.9.某市有48000名学生,一次考试后数学成绩服从正态分布,平均分为80,标准差为10,从理论上讲,在80分到90分之间有________人.10.生产工艺工程中产品的尺寸误差X(单位:mm)~N(0,1.52),如果产品的尺寸与规定的尺寸偏差的绝对值不超过1.5mm为合格品,求:(1)X的密度函数;(2)生产的5件产品的合格率不小于80%的概率.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[提能力]11.[多选题]若随机变量ξ~N(0,1),φ(x)=P(ξ≤x),其中x>0,下列等式成立的有()A.φ(-x)=1-φ(x)B.φ(2x)=2φ(x)C.P(|ξ|<x)=2φ(x)-1D.P(|ξ|>x)=2-φ(x)12.已知检测某元件的测量结果ξ服从正态分布N(1,σ2)(σ>0),且ξ在(0,1)内取值的概率为0.4.任取这样的元件100个,测量结果在(0,2)内的元件个数的期望值为()A.40B.50C.80D.9013.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.14.根据公共卫生传染病分析中心的研究,传染病爆发疫情期间,如果不采取任何措施,则会出现感染者基数猛增,重症挤兑,医疗资源负荷不堪承受的后果.如果采取公共卫生强制措施,则会导致峰值下降,峰期后移.如图,设不采取措施、采取措施情况下分别服从正态分布N(35,2),N(70,8),则峰期后移了________天,峰值下降了________%(注:正态分布的峰值计算公式为)15.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.利用该正态分布,求P(187.8<Z<212.2).附:≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com[培优生]16.《山东省高考改革试...