小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com课时作业(二十九)超几何分布练基础1.在100张奖券中,有4张中奖,从中任取两张,则两张都中奖的概率是()A.B.C.D.2.在含有3件次品的50件产品中,任取2件,则至少取到1件次品的概率为()A.B.C.D.3.某手机经销商从已购买某品牌手机的市民中抽取20人参加宣传活动,这20人中年龄低于30岁的有5人.现从这20人中随机选取2人各赠送一部手机,记X为选取的年龄低于30岁的人数,则P(X=1)=________.4.学校要从5名男生和2名女生中随机抽取2人参加社区志愿者服务,若用X表示抽取的志愿者中女生的人数,请写出随机变量X的分布列.(结果用分数表示)提能力5.盒中有10个螺丝钉,其中有3个是坏的,现从盒中随机地抽取4个,那么概率是的事件为()A.恰有1个是坏的B.4个全是好的C.恰有2个是好的D.至多有2个是坏的6.(多选)袋中有10个大小相同的球,其中6个黑球,4个白球,现从中任取3个球,则下列结论中正确的是()A.取出的白球个数X服从二项分布B.取出的黑球个数Y服从超几何分布C.取出2个白球的概率为D.若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为7.某12人的兴趣小组中,有5名“三好学生”,现从中任意选6人参加竞赛,用X表示这6人中“三好学生”的人数,则当X取________时,对应的概率为.8.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列.9.某超市举办有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有1个红球,3个白球的甲箱和装有2个红球,2个白球的乙箱中,各随机摸出1个球,若都是红球,则可获得现金100元;若只有1个红球,则可获得现金50元;若没有红球,则不获奖.球的大小重量完全相同,每次抽奖后都将球放回且搅拌均匀.(1)若某顾客有1次抽奖机会,求该顾客获得现金100元或50元的概率;(2)若某顾客有2次抽奖机会,求该顾客在2次抽奖中一共获得现金100元的概率.培优生10.2022年全国各地新型冠状病毒卷土重来,为减小病毒感染风险,人们积极采取措施,其中“戴口罩”是最有效的防疫措施之一.某市为了了解全市居民佩戴口罩的现状,以便更好的做好宣传发动工作,主管部门随机选取了该地的100名市民进行调查,将他们每天戴口罩的时长分为6段:[0,2),[2,4),…,[10,12],并把得到的数据绘制成下面的频数分布表.时长/h[0,2)[2,4)[4,6)[6,8)[8,10)[10,12]频数51025351510(1)若将频率作为概率,从全市居民中随机抽取3人,记“抽出的3人中至少有1人戴口罩时长不足8小时”为事件A,求事件A发生的概率;(2)现从戴口罩时长在[0,2)、[2,4)、[4,6)的样本中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用X表示戴口罩时长在[2,4)内的人数,求X的分布列.