小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第二整除讲问题进阶上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等.现在我们再来学习一些新的判断方法.一、截断作和能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位数)之和能被99整除.2008cc例题1练习123cc1234789cc例题2练习2123678cc小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数能被99整除,这个八位数是多少?二、截断作差能被7、11、13整除的数的特征:从个位开始,每三位一截,奇数段之和与偶数段之和的差能被7或11或13整除.5989c例题3练习3255259555999个个c例题4练习4小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.【分析】在本题中,能被13整除.这个数的位数太多,我们可以想办法使它变得简短一些.因为1001是13的倍数,而555555、999999分别是555、999与1001的乘积,说明它们都是13的倍数.那我们是不是可以去掉这个51位数上的一些5和9,并仍然保证它能被13整除?已知多位数能被13整除,那么中间方格内的数字是多少?用数字6,7,8各两个,要组成能同时被6,7,8整除的六位数.请写出一个满足要求的六位数.例题5一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数最小是多少?例题6小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【分析】能被6,7,8整除的数有什么特点呢?最难把握的在于这个六位数能被7整除,我们应该怎样安排数字才能使得它的前三位与后三位的差能被7整除呢?题目只要求我们写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑.我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积.接下来,大家想到该怎么办了吗?课堂内外小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com作业1.在7315,58674,325702,96723,360360中,7的倍数有哪些?13的倍数有哪些?2.四位数能同时被9和11整除,这个四位数是多少?3.四位数能被7整除,那么这个四位数是多少?4.已知多位数(2012个258)能同时被7和13整除,方格内的数字是多少?5.已知多位数能被7整除,那么中间方格内的数字是多少?