小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第十排列合用讲组应上一讲学习了基本的排列组合公式,本讲主要解决一些实际问题.在解决实际问题时,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com先要判断出顺序对于问题的结果有没有影响,再考虑应该用排列还是组合来进行计算.排列和组合的区分在这一讲是我们学习的难点和重点.接下来我们通过一些生活中的例子,进一步来体会一下排列和组合的区别.例题19支球队进行足球比赛:(1)如果实行单循环制,即每两队之间恰好比赛一场.每场比赛后,胜方得3分,负方不得分,平局双方各得1分,那么一共要举行多少场比赛?9支队伍的得分总和最多为多少?(2)如果实行双循环制,即每两队之间分主、客场.那么一共要举行多少场比赛?「分析」每场比赛有两支队伍参加,现在要从几支队伍里挑呢?挑的时候这两支队伍有没有顺序?每场比赛中,两支队伍获得的分数之和最多是多少呢?练习1棋王争霸赛在8名选手间展开:(1)如果实行单循环赛制,共要进行多少场比赛?(2)如果实行双循环赛制,共要进行多少场比赛?例题2围棋兴趣小组一共有8名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法?(2)如果从中选出3名同学去参加一次全市比赛,共有多少种选法?「分析」同样都是选出3个人,这两个问题之间有什么区别?练习2一次厨艺大赛中,主办方给定的菜谱中有7道菜,请问:(1)如果要求从这7道菜中选做2道菜,共有多少种不同的选法?(2)如果要求从这7道菜中选做1道作为主菜,另外1道作为副菜,共有多少种不同的选法?全攻全守某城市的足球队员体力充沛,战绩也不错.一次比赛前,教练敲定出场名单之后,因临时有事离场一段时间.回来以后,教练发现比赛早已开始,队员们“全攻全守”,都追着球跑,全队踢球毫无章法.教练一看就着急了,忙问为什么这样,替补队员说:“你只选定了主力队员,却没有小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com给他们分配各自的位置啊.这不,球到哪儿,人到哪儿!”从公式:,可以看出:,所以计算从m个元素中选出n个元素的排列数时也可以分成两步:先计算从m个元素中选出n个元素的组合数,再计算这n个元素的排列数即可.接下来我们通过例题看看排列与组合之间有什么联系.例题3王老师带着小高、卡莉娅、萱萱一行四人去参加一次聚会,主持人要求每个人领取一个彩球,这些球的颜色各不相同,共有12个.(1)小高是第一个取球的人,他一共选出了4个球,准备回头分给大家,那么一共有多少种选法?(2)小高回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?「分析」(1)、(2)恰好是(3)的两个步骤,所以不难通过(1)、(2)的结果来计算(3).(1)、(2)应该按照排列来算还是按照组合来算呢?能不能跳过(1)、(2)直接计算(3)呢?练习3先从10名同学中选出3人作为班委,再在这3人中确定出班长、学习委员和生活委员(一人只能担任一个职位),共有多少种不同的可能?例题4周末大扫除,老师要从10名男生和10名女生中选出5名留下打扫卫生.(1)如果随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?「分析」(1)是从几名同学出选5名?(2)选2名男生有几种选法?选3名女生有几种选法?练习4老师要从9名男生和7名女生中挑出4人参加数学竞赛,共有多少种不同的选择方法?如果4人中要求有3名男生、1名女生呢?接下来我们学习圆周排列.从m个不同的元素中取出n个()元素,并按照一定的顺序排成一个圆周,就是圆周排列.圆周排列与排列的不同之处在于圆周排列是首尾132321213123231312小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com相邻的,旋转后相同的排法视为一种排法.如下图,1、2、3的三种排列:123、231、312,在圆周排列中都是一个排列;另外三种排列:132、321、213,在圆周排列中也是一个排列,而且这两个圆周排列是不同的.例题5从...