【分类思路】把一个复杂的问题,依照某种规律,分解成若干个较简单的问题,从而使问题得到解决,这就是分类思路。这种思路在解决数图形个数问题中经常用到。例1如图2.12,共有多少个三角形?分析(用分类思路考虑):这样的图直接去数有多少个三角形,要做到能不重复,又不遗漏,是比较困难的。怎么办?可以把图中所有三角形按大小分成几类,然后分类去数再相加就是总数了。本题根据条件,可以分为五类(如图2.13)。例2如图2.14,象棋棋盘上一只小卒过河后沿着最短的路走到对方“将”处,这小卒有多少种不同的走法?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com分析(运用分类思路分析):小卒过河后,首先到达A点,因此,题目实际上是问:从A点出发,沿最短路径有多少种走法可以到达“将”处,所谓最短,是指不走回头路。因为“将”直接相通的是P点和K点,所以要求从A点到“将”处有多少种走法,就必须是求出从A到P和从A到K各有多少种走法。分类。一种走法:A到B、C、D、E、F、G都是各有一种走法。二种走法:从A到H有两种走法。三种走法:从A到M及从A到I各有三种走法。其他各类的走法:因为从A到M、到I各有3种走法,所以从A到N就有3+3=6种走法了,因为从A到I有3种走法,从A到D有1种走法,所以从A到J就有3+1=4种走法了;P与N、J相邻,而A到N有6种走法,A到J有4种走法,所以从A到P就有6+4=10种走法了;同理K与J、E相邻,而A到J有4种走法,到E有1种走法,所以A到K就有4+1=5种走法。再求从A到“将”处共有多少种走法就非常容易了。小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com