小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com镇海中学2022学年第一学期期中考试高一年级数学试卷一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,给出下列四个对应关系,其中能构成从M到N的函数的是()A.B.C.D.【答案】A【解析】【分析】根据映射,带值检验即可解决.【详解】对于,当时,,故B错;对于,当时,,故C错;对于,当时,,故D错;故选:A.2.已知,则()A.B.C.D.【答案】D【解析】【分析】A令即可判断;B、C应用作差法判断大小关系;D利用基本不等式,注意等号成立条件判断即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】A:当时,错误;B:,而,故,错误;C:,而,若时,错误;D:,当且仅当时等号成立,而,故,正确.故选:D3.设,则“”是“关于x的不等式有解”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】先分,,讨论,求出不等式有解时的范围,再通过充分性和必要性的概念得答案.【详解】关于x的不等式有解当时,,得,符合有解;当时,或,解得或关于x的不等式有解得,故“”是“关于x的不等式有解”的必要不充分条件故选:B.4.已知集合,集合,则()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【答案】C【解析】【分析】根据4和6的最小公倍数为12,得,而,易得两集合之间关系.【详解】,且,,,又,则集合中的元素应为12的正整数倍,集合中的元素为24的整数倍,故,.可知,当元素满足为24的整数倍时,必满足为12的正整数倍,则故A,B错误,对D选项,若,则此元素既不在集合中,也不在集合中,故D错误,故选:C.5.下列判断正确的是()A.函数既是奇函数又是偶函数B.函数是非奇非偶函数C.函数是偶函数D.函数是奇函数【答案】D【解析】【分析】根据奇偶性的定义和性质,逐项判断即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】解:对于A,,所以,故函数是偶函数,不是奇函数,故A错误;对于B,函数的定义域为,所以,则为奇函数,故B错误;对于C,函数定义域满足,定义域不关于原点对称,则函数非奇非偶,故C错误;对于D,函数的定义域为,所以,则函数是奇函数,故D正确.故选:D.6.已知函数,则函数的图象关于y轴对称的图象是()A.B.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.D.【答案】C【解析】【分析】首先对时,函数单调性进行分析,然后得到其图像关于轴对称后的单调性,再讨论时,利用基本不等式等到它在此范围内的最值,然后得到其图像关于轴对称后的最值.【详解】当时,,设,,根据减函数加上减函数为减函数,则在单调递减,故当其关于对称后,变为当时,对称后的函数在上单调递增,故A,B,D错误,当时,,当且仅当时等号成立,故当其关于对称后,变为,应有最小值2,故选:C.7.已知定义在上的偶函数在区间上单调递增,则满足的取值范围为()A.B.C.D.【答案】A【解析】【分析】根据为偶函数得出的对称轴,单调性得出的单调性,由根据题意列不等式求解即可.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】由题知:是在上的偶函数,所以关于轴对称,因为在区间上单调递增,所以在区间上单调递减,所以关于轴对称,在区间上单调递增,在区间上单调递减,所以,因为,所以,解得:,所以取值范围为,故选:A.8.已知集合,,,.若,则集合A中元素个数的最大值为()A.1347B.1348C.1349D.1350【答案】C【解析】【分析】通过假设,求出相应的,通过建立不等关系求出相应的值.【详解】设满足题意,其中,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com则,,,,,,中最小的元素为1,最大的元素为,,,,实际上当时满足题意,证明如下:设,则,由题知,即,故的最小值为674,于是时,中的元素最多,即时满足题意,终上所述,集合中元素的个数的最大值为1349故选:C.二、选择题:本题共4小题,每...