小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题03一元二次方程的应用题重难点题型专训【题型目录】题型一传播问题题型二增长率问题题型三与图形有关的问题题型四数字问题题型五营销问题题型六动态几何问题题型七行程问题题型八图表信息题题型九其他问题【经典例题一传播问题】【解题技巧】1、病毒传染问题:设每轮传染中平均一个人传染了个人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了个人,用代数式表示第一轮后共有人患了流感.第二轮传染中,人中的每个人又传染了个人,用代数式表示第二轮后共有1×(1+x)+x(1+x)=(1+x)²人患了流感.2、树枝问题:设一个主干长x个枝干,每个枝干长x个小分支,则一共有1+x+x²个枝。【例1】(2023秋·云南昆明·九年级统考期末)中国男子篮球职业联赛(简称:CBA),分常规赛和季后赛两个阶段进行,采用主客场赛制(也就是参赛的每两个队之间都进行两场比赛).2022-2023CBA常规赛共要赛240场,则参加比赛的队共有()A.80个B.120个C.15个D.16个【答案】D【分析】根据参赛的每两个队之间都进行两场比赛,共要比赛240场,可列出方程.【详解】解:设参加比赛的队共有x,根据题意可得:,解得:,(舍去),故选:D.【点睛】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数作为等量关系列方程求解.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式训练】1.(2023秋·浙江台州·九年级统考期末)有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,下列所列方程正确的是()A.B.C.D.【答案】A【分析】先根据题意列出第一轮传染后患流感的人数,再根据题意列出第二轮传染后患流感的人数,而已知第二轮传染后患流感的人数,故可得方程.【详解】解:设每轮传染中平均一个人传染了x个人,第一轮传染后患流感的人数是:,第二轮传染后患流感的人数是:,而已知经过两轮传染后共有121人患了流感,则可得方程,.即故选:A.【点睛】本题主要考查一元二次方程的应用,要根据题意列出第一轮传染后患流感的人数,再根据题意列出第二轮传染后患流感的人数,而已知第二轮传染后患流感的人数,故可得方程.2.(2022秋·江苏无锡·九年级校联考阶段练习)德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,那每轮传染中平均一个人传染了____个人;如果不及时控制,照这样的传染速度,经过三轮传染后,一共有______人感染德尔塔病毒.【答案】111728【分析】设平均一个人传染了x人,根据题意,两轮传播了人,列方程得,解方程即可;三轮传播的人数为,计算即可.【详解】设平均一个人传染了x人,根据题意,两轮传播了人,列方程得,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解方程得(舍去),故答案为:11;三轮传播的人数为,故答案为:1728.【点睛】本题考查了一元二次方程的应用传播问题,熟练掌握传播问题解法是解题的关键.3.(2023春·全国·八年级专题练习)2019年12月以来,“新冠”病毒影响着人们的出门及交往.(1)在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)某小区物管为预防业主感染传播购买A型和B型两种口罩,购买A型口罩花费了2500元,购买B型口罩花费了2000元,且购买A型口罩数量是购买B型口罩数量的2倍,已知购买一个B型口罩比购买一个A型口罩多花3元.则该物业购买A,B两种口罩单价分别为多少元?【答案】(1)11人(2)型口罩的单价为5元,型口罩的单价为8元【分析】(1)设每轮传染中平均一个人传染了人,根据2人感染“新冠”经过两轮传染后共有288人感染“新冠”,即可得出关于的一元二次方程,解之取其正值即可得出结论;(2)设该物业购买型口罩的单价为元,则型口罩的单价为元,列出方程,解方...