小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题06二次函数的图象与性质重难点题型专训【九大题型】【题型目录】【知识梳理】知识点二:二次函数的图像与性质二次函数y=ax2的图象的性质:的性质:上加下减的符号开口方向顶点坐标对称轴性质向上(0,0)轴时,随的增大而增大;时,随的增大而减小;时,有最小值0.向下(0,0)轴时,随的增大而减小;时,随的增大而增大;时,有最大值0.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的性质:左加右减的性质:左加右减,上加下减一般式:2yaxbxc(a,b,c为常数,0a);函数二次函数2yaxbxc(a、b、c为常数,a≠0)图象0a0a的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.的符号开口方向顶点坐标对称轴性质向上x=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下x=h时,随的增大而减小;时,随的增大而增大;时,有最大值.的符号开口方向顶点坐标对称轴性质向上x=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下x=h时,随的增大而减小;时,随的增大而增大;时,有最大值.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com开口方向向上向下对称轴直线2bxa直线2bxa顶点坐标24,24bacbaa24,24bacbaa增减性在对称轴的左侧,即当2bxa时,y随x的增大而减小;在对称轴的右侧,即当2bxa时,y随x的增大而增大.简记:左减右增在对称轴的左侧,即当2bxa时,y随x的增大而增大;在对称轴的右侧,即当2bxa时,y随x的增大而减小.简记:左增右减最大(小)值抛物线有最低点,当2bxa时,y有最小值,244acbya最小值抛物线有最高点,当2bxa时,y有最大值,244acbya最大值知识点三:二次函数的图象与a,b,c的关系学生对二次函数中字母系数a、b、c及其关系式的符号判断常有些不知所措,这里介绍几个口诀来帮助同学们解惑.1.基础四看“基础四看”是指看开口,看对称轴,看与y轴的交点位置,看与x轴的交点个数.“四看”是对二次函数y=ax2+bx+c(a≠0)的图象最初步的认识,而且这些判断都可以通过图象直接得到,同时还可以在此基础上进行一些简单的组合应用.2.组合二看(1)三全看点在a、b、c间的加减组合式中,最常见的如“a+b+c",“a-b+c”,“4a+2b+c”,“4a-2b+小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comc”等类型的式子,这类式子a、b、c三个字母都在,并且c的系数通常为1,这时只要取x为b前的系数代入二次函数y=ax2+bx+c就可以得到所需的形式,从而由其对应的y的值时进行判断即可.(2)有缺看轴当a、b、c三个字母只出现两个间的组合时,这时对同学们来讲难度是较大的,如何解决呢?其实我们只要想一想为什么会少一个字母,这个问题就可以较好的解决.少一个字母的原因就是因为有对称轴为我们提供了a、b之间的转换关系,如果少的是字母c,则直接用对称轴提供的信息即可解决;如果少的是字母a或b,则可利用对称轴提供的a、b间转换信息,把a(或b)用b(或a)代换即可.3.取值计算当解题感到无从下手时,可以尝试取值法,只要根据函数图象的特点及所给出的数据(或范围),取相应点坐标代入函数的解析式中,求出其字母系数,即可进行相关判断.二次函数的图象与系数之间的关系,解题的关键是弄清楚图象的开口方向、对称轴的位置、与坐标轴的交点及其图象中特殊点的位置,确定出与0的大小关系及含有的代数式的值的大小关系.(1)决定开口方向:当时抛物线开口向上;当时抛物线开口向下.(2)共同决定抛物线的对称轴位置:当同号时,对称轴在轴左侧;当异号时,对称轴在轴右侧(可以简称为“左同右异”);当时,对称轴为轴.(3)决定与轴交点的纵坐标:当时,图象与轴交于正半轴;当时,图象过原点;当时,图象与轴交于负半轴.(4)的值决定了抛物线与轴交点的个数:当时,抛物线与轴有两个交点...