小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题02二次函数(满分突破卷)1.将抛物线y=3x2向上平移4个单位,再向右平移2个单位,所得抛物线的函数解析式为.2.当m2≤﹣x≤m时,函数y=x24﹣x+4的最小值为4,则m的值为.3.已知二次函数y=﹣(x﹣k)2+h,当x>2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥2B.k≤2C.k=2D.k≤2﹣4.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线交于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线交于点A4,…,依此规律进行下去,则点A2020的坐标为.5.(2022•莱芜区一模)将抛物线y=﹣(x+1)2的图象位于直线y=﹣4以下的部分向上翻折,得到如图所示的图象,若直线y=x+m与图象只有四个交点,则m的取值范围是()A.﹣1<m<1B.1<m<C.﹣1<m<D.﹣1<m<6.如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.7.(2022•日照一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+2b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个8.“燃情冰雪,拼出未来”,北京冬奥会将于2022年2月4日如约而至.某商家已提前开始冬奥会吉祥物“冰墩墩”纪念品的销售.每个纪念品进价40元,规定销售单价不小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元.(1)直接写出y与x之间的函数关系式和自变量x的取值范围;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?9.如图,△ABC是等腰直角三角形,AB=,D为斜边BC上的一点(D与B、C均不重合),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.(1)求证∠DCE=90°;(2)当△DCE的面积为1.5时,求x的值;(3)试问:△DCE的面积是否存在最大值?若存在,请求出这个最大值,并指出此时x的取值;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com10.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.11.如图,已知抛物线y=﹣x2+mx+m2﹣的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标;(2)在对称轴左侧的抛物线上存在一点P,使得∠PAB=45°,求点P坐标;(3)如图(2),将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com12.如图,直线y=x3﹣与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x3﹣交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直...