小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专项12二次函数与几何综合-特殊三角形存在问题等腰三角形的存在性问题【方法1几何法】“两圆一线”(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C1为例,具体求点坐标:过点A作AH⊥x轴交x轴于点H,则AH=1,又类似可求点C2、C3、C4.关于点C5考虑另一种方法.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【方法2代数法】点-线-方程表示点:设点C5坐标为(m,0),又A(1,1)、B(4,3),表示线段:联立方程:,,直角三角形的存在性【方法1几何法】“两线一圆”(1)若∠A为直角,过点A作AB的垂线,与x轴的交点即为所求点C;(2)若∠B为直角,过点B作AB的垂线,与x轴的交点即为所求点C;(3)若∠C为直角,以AB为直径作圆,与x轴的交点即为所求点C.(直径所对的圆周角为直角)如何求得点坐标?以为例:构造三垂直.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【方法2代数法】点-线-方程小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【考点1等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【变式1-2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【变式1-2】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【考点2直角三角形的存在性】【典例2】(2021秋•建华区期末)抛物线y=x2+bx+c经过A、B(1,0)、C(0,﹣3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在y轴上是否存在一点E,使△ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2-1】(2022•灞桥区校级模拟)如图,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3).(1)求二次函数的表达式及顶点坐标;(2)连接BC,在抛物线的对称轴上是否存在一点E,使△BCE是直角三角形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【变式2-2】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2-3】(2022•武功县模拟)如图,经过点A(2,6)的直线y=x+m与y轴交于点B,以点A为顶点的抛物线经过点B,抛物线的对称轴为直线l.(1)求点B的坐标和抛物线的函数表达式;(2)在l右侧的...