小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专项20切线的证明方法归类(2大类型+5种方法)证明一条直线是圆的切线的方法及辅助线的作法(1)连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”(2)作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”【考点1有公共点:连半径,证垂直】方法1:特殊角计算法证垂直【典例1】(2022•思明区校级一模)如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.【变式1-1】(2021•广东二模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式1-2】(2021秋•潍坊期末)如图,A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,CD=2,E是CD延长线上的一点,且AE=AC.(1)求证:AE是⊙O的切线;(2)求ED的长.方法2:等角代换法证垂直【典例2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A作AD⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O的切线.【变式2-1】(2017秋•荆州区期末)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式2-2】(2021秋•灌南县期末)已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED与AB的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,BF=2,求△ABC外接圆的半径.方法3:平行线性质法证垂直【典例3】(2021秋•吉林期末)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.求证:PD是⊙O的切线;【变式3-1】(2022•大兴区二模)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3-2】(2021•崆峒区一模)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC.求证:DE是⊙O的切线.【变式3-3】(2022•百色一模)如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连结DB,过点D作DE⊥BC,垂足为点E.求证:DE是⊙O的切线;方法4:全等三角形法证垂直【典例4】(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O与BC相交于点E,在AC上取一点D,使得DE=AD,求证:DE是⊙O的切线.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式4-1】(2021秋•虎林市校级期末)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点D,若E是AC的中点,连接DE.求证:DE为⊙O的切线.【考点2无公共点:做垂直,证半径】方法5:角平分线的性质法证半径【典例5】(2020•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.求证:AC是⊙D的切线;【变式5-1】(2018•天河区校级一模)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E求证:BC是⊙D的切线;小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com方法6:全等三角形法证半径【典例6】如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径作圆,与BC相切于点C,过点A作AD⊥BO交BO的延长线于点D,且∠AOD=∠BAD.求证:AB为⊙O的切线;【变式6】(2020秋•开福区月考)如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.求证:BF是⊙O的切线;小学、初中、高中各种试卷真题知识...