小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com猜想01一元二次方程的应用(8种常见题型专练)题型一:数字问题题型二:传播问题题型三:单循环问题题型四:双循环问题题型五:增长率问题题型六:商品销售问题题型七:图形面积问题题型八:动态几何问题题型一:数字问题一.选择题(共1小题)1.(2021春•包河区校级期末)一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数大4.设个位数字为x,则方程为()A.x2+(x4﹣)2=10(x4﹣)+x4﹣B.x2+(x4﹣)2=10(x4﹣)+x+4C.x2+(x4﹣)2=10x+x44﹣﹣D.x2+(x+4)2=10(x+4)+x+4【分析】根据个位数与十位数的关系,可知十位数为x+4,那么这两位数为:10(x+4)+x,这两个数的平方和为:x2+(x+4)2,再根据两数的值相差4即可得出答案.【解答】解:依题意得:十位数字为:x+4,这个数为:x+10(x+4)这两个数的平方和为:x2+(x+4)2, 两数相差4,∴x2+(x+4)2=x+10(x+4)+4.故选:D.【点评】本题考查了数的表示方法,要会利用未知数表示两位数,然后根据题意列出对应的方程求解.二.填空题(共1小题)2.(2022秋•山亭区期末)方程x22﹣x+m=0有两个相等的实数根,则m的值为1.【分析】由题可得Δ=(﹣2)24×1×﹣m=0,即可得m的值.【解答】解: 方程x22﹣x+m=0有两个相等的实数根,∴Δ=(﹣2)24×1×﹣m=0,解得m=1.故答案为:1.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【点评】本题考查一元二次方程根的判别式,若一元二次方程有两个不相等的实数根,则Δ=b24﹣ac>0;若一元二次方程有两个相等的实数根,则Δ=b24﹣ac=0;若一元二次方程没有实数根,则Δ=b2﹣4ac<0.三.解答题(共2小题)3.(2021秋•新民市期末)2021年7月1日是建党100周年纪念日,在本月日历表上可以用小方框圈出四个数(如图所示),圈出的四个数中,最小数与最大数的乘积能否为33或65,若能求出最小数;若不能请说明理由.【分析】设这个最小数为x,则最大数为(x+8),根据最小数与最大数的乘积为65或33,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设最小的数为x,由题意得x(x+8)=33,解得x1=﹣11,x2=3.由表格知不符合实际舍去;由题意得x(x+8)=65,解得x1=﹣13(舍去),x2=5,所以当最大数与最小数乘积为65时,最小的数是5.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.(2022秋•连云港期末)一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是多少?【分析】先设个位数字为x,那么十位数字是(x3﹣),这个两位数是[10(x3﹣)+x],然后根据个位数字的平方刚好等于这个两位数即可列出方程求解即可.【解答】解:设个位数字为x,那么十位数字是(x3﹣),这个两位数是10(x3﹣)+x,依题意得:x2=10(x3﹣)+x,∴x211﹣x+30=0,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴x1=5,x2=6,∴x3﹣=2或3.答:这个两位数是25或36.【点评】此题考查了一元二次方程的应用,正确理解关键描述语,找到等量关系准确地列出方程是解决问题的关键.题型二:传播问题一.选择题(共5小题)1.(2022秋•邢台期末)德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,设每轮传染中平均1人传染了x人,下面所列方程正确的是()A.1+x+x2=144B.x(x+1)=144C.1+x+x(x+1)=144D.1+(1+x)+x(x+1)=144【分析】设每轮传染中平均1人传染了x人,则第一轮传染中有x人被传染,第二轮传染中有x(x+1)人被传染,根据“某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒”,即可得出关于x的一元二次方程,此题得解.【解答】解:设每轮传染中平均1人传染了x人,则第一轮传染中有x人被传染,第二轮传...