小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com清单03旋转(12个考点梳理+题型解读+核心素养提升+中考聚焦)【知识导图】【知识清单】考点一.利用轴对称设计图案利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.【例1】.(2023春•普宁市期末)下列四个图案中,可以看作是轴对称图形的是()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.B.C.D.【变式】.(2022秋•赣县区期末)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.考点二:利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.【例2】.(2022秋•长安区期末)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥,如图,将边长为3cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A'B'C'D',形成一个“方胜”图案,则点D,B'之间的距离为.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com考点三.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点.【例3】.(2022秋•惠东县期末)下列现象中属于旋转的是()A.汽车在急刹车时向前滑动B.拧开水龙头C.雪橇在雪地里滑动D.电梯的上升与下降【变式】.(2023春•嘉定区期末)一天中钟表时针从上午6时到上午9时旋转的度数为.考点四.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.【例4】.(2023春•达川区校级期末)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.6【变式1】.(2023春•渠县校级期末)阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.【变式2】.(2023秋•湖北期末)如图,D是等边△ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=95°,求∠BED的大小.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3】.(2022秋•临海市期末)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,且AD⊥BC于点F.(1)若∠CAE=50°,∠E=70°,求∠BAC的度数;(2)若∠CAF=α,直接写出∠E的度数.(用含α的式子表示)考点五.旋转对称图形(1)旋转对称图形如果某一个图形围...