小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题02解一元二次方程考试时间:120分钟试卷满分:100分姓名:__________班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022八下·淮北期末)若实数a,b,c满足,则()A.B.C.D.2.(2分)(2022八下·柯桥期末)方程(x-2)2=4(x-2)()A.4B.-2C.4或-6D.6或23.(2分)(2022·贵港)若是一元二次方程的一个根,则方程的另一个根及m的值分别是()A.0,-2B.0,0C.-2,-2D.-2,04.(2分)(2022·仙桃)若关于x的一元二次方程有两个实数根,,且,则()A.2或6B.2或8C.2D.65.(2分)(2022·雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为()A.﹣3B.0C.3D.96.(2分)(2022九下·泉州开学考)已知x,y为实数,且满足,记小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的最大值为M,最小值为m,则().A.B.C.D.7.(2分)(2021七下·娄底期中)无论a,b为何值代数式a2+b2+6b+11﹣2a的值总是()A.非负数B.0C.正数D.负数8.(2分)(2020八上·越秀期末)若,,是的三边长,且,则的形状是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定9.(2分)(2019九上·涪城月考)若点是抛物线上的点,则的最小值是()A.B.C.D.10.(2分)(2022·海陵模拟)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣10,当实数a变化时,x与y的大小关系是()A.x>yB.x=yC.x<yD.x>y、x=y、x<y都有可能评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022·福建)已知抛物线与x轴交于A,B两点,抛物线与x轴交于C,D两点,其中n>0,若AD=2BC,则n的值为.12.(2分)(2022·绥化)设与为一元二次方程的两根,则的值为.13.(2分)(2022·四川)已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com.14.(2分)(2022八下·嵊州期中)已知方程,则的值为.15.(2分)(2020七上·重庆月考)已知实数,满足,则代数式的最小值等于.16.(2分)已知(x﹣2016)2+(x﹣2018)2=80,则(x﹣2017)2=.17.(2分)设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为.18.(2分)(2022·柳江模拟)一元二次方程的解是.19.(2分)(2022·泗洪模拟)已知x=﹣2时,二次三项式x2﹣2mx+4的值等于﹣4,当x=时,这个二次三项式的值等于﹣1.20.(2分)(2022·南通模拟)已知代数式可以利用完全平方公式变形为,进而可知的最小值是4.依此方法,代数式的最小值是.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022八下·惠山期末)解方程:(1)(3分);(2)(3分).22.(4分)(2022·建湖模拟)先化简,再求值:,其中.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com23.(5分)(2022八下·长沙竞赛)已知关于x的方程只有一个实数根,求实数a的值.24.(5分)(2022八下·金华月考)有一边为3的等腰三角形,它的两边长是方程x2﹣4x+k=0的两根,求这个三角形的周长.25.(5分)若a为一元二次方程x2-x=-4的较大的个根,b为一元二次方程(y-4)2=18的较小的一个根,求a-b的值.26.(9分)(2022七下·苏州期中)利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2-2mn+2n2-8n+16=0,求m、n的值.解: m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0, (m-n)2≥0,(n-4)2≥0∴(m-n)2=0,(n-4)2=0∴m=n=4.材料二:探索代数式x2+4x+2与-x2+2x+3是否存在最大值或最小值?小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com①x2+4x+2=(x2+4x+4)-2=(x+2)2-2, (x+2)2≥0,∴x2+4x+2=(x+2)2-2≥-2.∴代数式...