小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第一次月考难点特训(一)与二次函数有关的压轴题1.如图,抛物线y=﹣x2+bx+c与x轴交于A(4,0),B(﹣1,0)两点与y轴交于点C,动点P在抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,请直接写出点P的坐标.2.如图,已知抛物线C1:y=a(x+2)25﹣的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.在平面直角坐标系中,抛物线y¿14x2−12mx+14m22﹣m顶点为M.(1)M点坐标为(结果用m表示).(2)当m=2时,如图所示,该抛物线与x轴交于A,B两点.P为抛物线第三象限内一点,过A作MP的垂线,垂足为C,D为射线CM上一点,若AC=CD,求∠BDM;(3)G(﹣3,1),H(1,2),若该抛物线与线段GH只有一个公共点,求m的取值范围.4.已知:如图1,抛物线C:y¿18x2+¿c交x轴于A、B两点(A在B左侧),交y轴于点C,若OB=2OC.(1)求c的值;(2)如图2,已知y¿14x2+¿c,过C点的直线l分别交第一象限内的抛物线C1、C2于M、N两点,探究M、N两点横坐标之间的数量关系;(3)如图3,将抛物线C1向下平移经过点K(8,0),交y轴于点T,得抛物线C3,点P是抛物线C3上在T、K间的一个动点(含端点).若D(0,﹣6)、E(4,0),记△PDE的面积为S,点P的横坐标为x.①求S关于x的函数关系式;②求满足S为整数的点P的个数.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com5.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.6.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.7.如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comEG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.8.如图1,抛物线y=ax2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,且A(﹣1,0),B(3,0),C(0,3)(1)求抛物线的解析式和抛物线的对称轴.(2)连接BC,如图2,与抛物线的对称轴交于点E,点P为线段BC上一动点,过点P作PF∥DE交抛物线于点F,设点...