小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com期中难点特训(二)二次函数综合压轴题1.如图,直线AB与抛物线y=x2+bx+c交于点A(﹣4,0),B(2,6),与y轴交于点C,且OA=OC,点D为线段AB上的一点,连结OD,OB.(1)求抛物线的解析式;(2)若OD将△AOB的面积分成1:2的两部分,求点D的坐标;(3)在坐标平面内是否存在点P,使以点A,O,B,P为顶点四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【答案】(1)(2)(-2,2)或(0,4)(3)存在,点P的坐标为(-2,6)或(6,6)或(-6,-6).【分析】(1)根据待定系数法,将A(−4,0)、B(2,6)代入,计算即可;(2)先确定点A点C坐标,再运用待定系数法先求出直线AB的解析式,设点D的坐标为(m,m+4),然后根据OD将△AOB的面积分成1:2的两部分计算即可;(3)设点P的坐标为(xp,yp),分3种情况分析解答即可.(1)解:将A(−4,0)、B(2,6)代入可得:,解得:,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴抛物线的解析式为:;(2)解: A点坐标为(-4,0),OA=OC∴C点坐标为(0,4)设直线AB的解析式为:,则,解得:,∴直线AB的解析式为:,设点D的坐标为(m,m+4), OD将△AOB的面积分成1:2的两部,即或,∴或,解得:或m=0∴点D的坐标为(-2,2)或(0,4);(3)解:存在;设点P的坐标为(xp,yp),①当四边形AOBP是平行四边形时,p1在第二象限时,轴,, B(2,6),∴点P的坐标为(-2,6);②当四边形AOPB是平行四边形时,p2在第一象限时,点P的横坐标为2+4=6,点P的,纵坐标坐标为6,点P的坐标为(6,6);③当四边形APOB是平行四边形时,p3在第三象限时,,,∴,,即,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com解得:,,此时点P的坐标为(-6,-6);综上,存在满足条件的点P的坐标为(-2,6)或(6,6)或(-6,-6).【点睛】本题属于二次函数与一次函数综合题,主要考查了运用待定系数法求解析式、三角形面积、平行四边形等知识点,正确求出二次函数、一次函数的解析式并掌握分类讨论思想成为解答本题的关键.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【答案】(1)y=﹣x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).【详解】试题分析:(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=2﹣x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.试题解析:(1)设抛物线解析式为y=a+9, 抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=1﹣,y=﹣+9=-+4x+5,(2)当y=0时,-+4x+5=0,∴x1=1﹣,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n, A(0,5),B(5,0),∴m=1﹣,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣+4x+5),∴D(x,﹣x+5),∴PD=-+4x+5+x5=-﹣+5x, AC=4,∴S四边形APCD=×AC×PD=2(-+5x)=-2+10x,∴当x=时,∴S四边形APCD最大=,(3)如图,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com过M作MH垂直于对称轴,垂足为H, MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8), A(0,5),...