小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题30圆与二次函数结合1.一动点在二次函数的图像上自由滑动,若以点为圆心,1为半径的圆与坐标轴相切,则点的坐标为______.2.如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为____________.3.如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是__.4.如图,在平面直角坐标系中,以为圆心的圆与轴相切于点,与轴相交于、两点,且.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com(1)求经过、、三点的抛物线的解析式;(2)设抛物线的顶点为,证明直线与相切;(3)在轴下方的抛物线上,是否存在一点,使面积最大,最大值是多少,并求出点坐标.5.定义:平面直角坐标系xOy中,过二次函数图像与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x24﹣x+3的坐标圆,并说明理由;(2)已知二次函数y=x24﹣x+4图像的顶点为A,坐标圆的圆心为P,如图1,求△POA周长的最小值;(3)已知二次函数y=ax24﹣x+4(0<a<1)图像交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连接PC,PD,如图2.若∠CPD=120°,求a的值.6.已知抛物线y=ax2+bx+3(a≠0)经过A(3,0)、B(4,1)两点,且与y轴交于点C.(1)求抛物线的解析式;(2)如图,设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△PAB的面积是小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求面积的最小值及E点坐标.7.如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.8.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象(要求过点A、B、C,开口方向、顶点和对称轴相对准确)(2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com9.如图,已知抛物线y=x﹣2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为.(直接写出答案)10.如图,已知抛物线的对称轴为直线:且与轴交于点与轴交于点.(1)求抛物线的解析式;(2)试探究在此抛物线的对称轴上是否存在一点,使的值最小?若存在,求小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的最小值,若不存在,请说明理由;(3)以为直径作⊙,过点作直线与⊙相切于点,交轴于点,求直线的解析式.11.如图,已知二次函数的图象与x轴交于点A(1,0)、B(,0),与y轴的正半轴交于点C.(1)求二次函数的表达式;(2)点D是线段OB上一动点,过点D作y轴的平行线,与BC交于点E,与抛物线交于点F,连接CF,探究是否存在点D使得△CEF为直角三角形?若存在,求点D的坐标;若不存在,说明...