小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com24.1.1&24.1.2圆及垂径定理圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.注意:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.题型1:圆的概念1.到圆心的距离不大于半径的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆【变式1-1】下列条件中,能确定一个圆的是()A.以点O为圆心B.以10m长为半径C.以点A为圆心,4cm长为半径D.经过已知点M小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.题型2:与圆有关的概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦.()【变式2-1】下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧【变式2-2】下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comA.1个B.2个C.3个D.4个题型3:确定圆心和圆3.将图中的破轮子复原,已知弧上三点A,B,C.画出该轮的圆心;【变式3-1】如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.题型4:圆的对称性4.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式4-1】圆O所在平面上的一点P到圆O上的点的最大距离是10,最小距离是2,求此圆的半径是多少?【变式4-2】如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的长的取值范围是.垂径定理及推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.常见辅助线做法:1)过圆心,作垂线,连半径,造,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.题型5:垂径定理与计算5.如图,AB是⊙O的直径,弦CDAB⊥于点E.若AB=10,BE=2,求弦CD的长.【变式5-1】如图,AB是⊙O的弦,C为AB的中点,OC的延长线与⊙O交于点D小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com,若CD=2,AB=12,求⊙O的半径.【变式5-2】如图,AB是⊙O的直径,弦CDAB⊥于点E,OC=10cm,CD=16cm,求AE的长.题型6:垂径定理与证明6.如图,AB是⊙O的弦,C、D为直线AB上两点,OC=OD,求证:AC=BD.【变式6-1】已知:如图,AB,AC是⊙O的两条弦,AO平分∠BAC.求证:AB=AC.【变式6-2】如图,AB、CD都是⊙O的弦,且ABCD∥,求证:´AC=´BD小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载ww...