小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com25概率必然事件、不可能事件和随机事件(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.注意:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.题型1:必然事件、不可能事件和随机事件1.“对于二次函数y=(x−1)2+1,当x≥1时,y随x的增大而增大”,这一事件为()A.必然事件B.随机事件C.不确定事件D.不可能事件【变式1-1】下列事件中,属于不可能事件的是()A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comC.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯【变式1-2】事件①:任意画一个多边形,其外角和为360°;事件②:经过一个有交通信号灯的十字路口,遇到红灯;则下列说法正确的是()A.事件①和②都是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是必然事件D.事件①是必然事件,事件②是随机事件概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率,记为.注意:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3)事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.题型2:概率公式及计算2.不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为()A.38B.35C.58D.12【变式2-1】从-2,0,2,3中随机选一个数,是不等式2x−3≥1的解的概率为()A.13B.14C.12D.23【变式2-2】在如图所示的电路中,随机闭合开关S1、S2、S3中的两个,能让灯泡L1发光的概率是(小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com)A.12B.13C.23D.14用列举法求概率列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.树状图:当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图;树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.注意:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.(3)树形图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;(4)在用列表法或树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.题型3:列举法求概率-放回型或独立型3(转盘).如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了表面颜色不同外,其它构造完全相同.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出蓝色,那么红色和蓝色在一起能配成紫色.请你用列表法或树状图法,求游戏者不能配成紫色的概率.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3-1】如图,有一转盘中有A、B两个区域,A区域所对的圆心角为120°,让转盘自由转动两次.利用树状图或列表求出两次指针都落在A区域的概率。4(数字).一个纸箱内装有三张正面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同...