人教八年级数学下册 专题11 勾股定理与构造图形解决问题(解析版).docx本文件免费下载 【共29页】

人教八年级数学下册 专题11 勾股定理与构造图形解决问题(解析版).docx
人教八年级数学下册 专题11 勾股定理与构造图形解决问题(解析版).docx
人教八年级数学下册 专题11 勾股定理与构造图形解决问题(解析版).docx
小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题11勾股定理与构造图形解决问题【例题讲解】在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点是正方形内一点,,,,你能求出的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将绕点逆时针旋转,得到,连接,可求出的度数;思路二:将绕点顺时针旋转,得到,连接,可求出的度数;请参照小明的思路,任选一种写出完整的解答过程;(2)如图2,若点是等边三角形内一点,若,则线段,,满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段,,满足的等量关系.解:(1)思路一:如图1,将△BPC绕点B逆时针旋转90°,得到△,连接,则∴,根据勾股定理得,, AP=1,∴,∴是直角三角形,且,∴.思路二:将△PAB绕点B顺时针旋转90°,得到,连接,∴∴,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com ∴∴,∴∴;(2),理由如下:如图,由等边可得:把绕点顺时针旋转得到则为等边三角形,【综合解答】1.如图,点是等边三角形内一点,且,,,则()A.B.C.D.【答案】D【解析】【分析】将△BCP绕B逆时针旋转60°,点C和A重合,P到P′,连接PP′,得出等边三角形PBP′,求出∠BPP′=60°,推出直角三角形APP′,求出∠APP′,即可求出;【详解】解:将绕逆时针旋转,点和重合,到,连接, ,,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴是等边三角形, , ,,,∴,∴,∴.故选:D.【点睛】本题主要考查了等边三角形的性质,勾股定理,旋转的性质,掌握等边三角形的性质,勾股定理,旋转的性质是解题的关键.2.如图,,,,点、为边上的两点,且,连接、,则下列结论:①;②是等腰直角三角形;③;④,其中正确的有()A.①③B.①②③C.①③④D.①②③④【答案】C【解析】【分析】根据SAS得△AEDAEF△≌,证明△ABFACD≌△,得出BF=CD;由△AEDAEF≌△,得到DE=EF;证明∠EBF=90°,即可解决问题.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【详解】解: ∠DAF=90°,∠DAE=45°,∴∠FAE=45°=DAE∠,在△AED与△AEF中,AE=AE,∠EAF=EAD∠,AD=AF,∴△AEDAEF≌△(SAS),故①正确; ∠BAC=DAF=90°∠,∴∠BAF=DAC∠;在△ABF与△ACD中,AB=AC,∠FAB=DAC∠,AF=AD,∴△ABFACD≌△(SAS),∴BF=CD;∠ABF=ACD=45°∠, ∠EBF=∠ABC+ABF=90°∠,D,E点在BC边上位置不固定,故不能得到BE=CD,所以是直角三角形,②错误; △AEDAEF≌△,∴DE=EF;∴BE2+BF2=EF2,即BE2+DC2=DE2,③正确;连接FD, ∠FBD=90°,∠DAF=90°,∴BF2+BD2=FD2,AF2+AD2=FD2,∴BF2+BD2=AF2+AD2,又 BF=DC,AD=AF∴,故④正确;∴正确的有:①③④故答案为:C.【点睛】小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com该题主要考查了全等三角形的判定及性质、勾股定理、相似三角形的判定;证明三角形全等是解决问题的关键.3.如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,,,则四边形的面积为___________.【答案】6+4【解析】【分析】连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.【详解】连结PP′,如图, △ABC为等边三角形,∴∠BAC=60°,AB=AC, 线段CP绕点C顺时针旋转60°得到线段CP',∴CP=CP′=4,∠PCP′=60°,∴△PCP′为等边三角形,∴PP′=PC=4,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com ∠ACP+BCP=60°∠,∠ACP+ACP′=60°∠,∴∠BCP=ACP′∠,且AC=BC,CP=CP′∴△BCPACP′≌△(SAS),∴AP′=PB=5,在△APP′中, PP′2=42=16,AP2=32=9,AP′2=52=25,∴PP′2+AP2=AP′2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
人教八年级数学上册 15.1.2分式的基本性质(解析版).doc
人教八年级数学上册 15.1.2分式的基本性质(解析版).doc
免费
0下载
人教八年级数学上册 专题04推理能力课之和角平分线有关的辅助线重难点专练(原卷版)(人教版).docx
人教八年级数学上册 专题04推理能力课之和角平分线有关的辅助线重难点专练(原卷版)(人教版).docx
免费
0下载
南开区2016-2017年八年级数学上《整式乘除与因式分解》期末复习专题试卷及答案.doc
南开区2016-2017年八年级数学上《整式乘除与因式分解》期末复习专题试卷及答案.doc
免费
0下载
初中八年级上册数学28.人教版·安徽省安庆市期末卷.doc
初中八年级上册数学28.人教版·安徽省安庆市期末卷.doc
免费
4下载
初中八年级下册数学2020年江苏省徐州市中考数学试卷.docx
初中八年级下册数学2020年江苏省徐州市中考数学试卷.docx
免费
30下载
初中八年级数学上册第13章《轴对称》全章检测题.doc
初中八年级数学上册第13章《轴对称》全章检测题.doc
免费
6下载
初中八年级下册数学类比归纳专题:有关中点的证明与计算.doc
初中八年级下册数学类比归纳专题:有关中点的证明与计算.doc
免费
23下载
初中八年级上册数学11.3.2多边形的内角和(解析版).doc
初中八年级上册数学11.3.2多边形的内角和(解析版).doc
免费
15下载
初中八年级下册数学第三章 图形的平移与旋转 周周测3(3.2).doc
初中八年级下册数学第三章 图形的平移与旋转 周周测3(3.2).doc
免费
19下载
初中八年级上册数学期末测试压轴题模拟训练(一)(原卷版)(人教版).docx
初中八年级上册数学期末测试压轴题模拟训练(一)(原卷版)(人教版).docx
免费
12下载
初中八年级下册数学18.2.3 第2课时 正方形的判定2.doc
初中八年级下册数学18.2.3 第2课时 正方形的判定2.doc
免费
23下载
初中八年级上册数学专题07模型方法课之互补型旋转解题方法专练(解析版)(人教版).docx
初中八年级上册数学专题07模型方法课之互补型旋转解题方法专练(解析版)(人教版).docx
免费
17下载
人教八年级数学上册 八年级上期末数学试卷07.doc
人教八年级数学上册 八年级上期末数学试卷07.doc
免费
0下载
人教八年级数学下册 专题18.4菱形的判定专项提升训练(重难点培优)-【拔尖特训】2023年培优(原卷版)【人教版】.docx
人教八年级数学下册 专题18.4菱形的判定专项提升训练(重难点培优)-【拔尖特训】2023年培优(原卷版)【人教版】.docx
免费
0下载
人教八年级数学下册 专题02 求二次根式中的字母的值四类型(原卷版).docx
人教八年级数学下册 专题02 求二次根式中的字母的值四类型(原卷版).docx
免费
0下载
初中八年级数学上册13.3.2 等边三角形-八年级数学人教版(上)(原卷版).doc
初中八年级数学上册13.3.2 等边三角形-八年级数学人教版(上)(原卷版).doc
免费
20下载
八年级下册数学华师版考卷29.北师版·河南省平顶山市汝州市期末.doc
八年级下册数学华师版考卷29.北师版·河南省平顶山市汝州市期末.doc
免费
22下载
人教八年级数学上册 第十三章 轴对称 章末检测卷(原卷版).docx
人教八年级数学上册 第十三章 轴对称 章末检测卷(原卷版).docx
免费
0下载
八年级下册 数学北师大版第六章 平行四边形 知识归纳.doc
八年级下册 数学北师大版第六章 平行四边形 知识归纳.doc
免费
23下载
人教八年级数学上册 第十一章 三角形(能力提升)-2023单元测试-(原卷).docx
人教八年级数学上册 第十一章 三角形(能力提升)-2023单元测试-(原卷).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档
确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群