小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题26正方形的折叠1.如图,有一正方形的纸片ABCD,边长为6,点E是DC边上一点且DC=3DE,把ADE沿AE折叠使ADE落在AFE的位置,延长EF交BC边于点G,连接BF有以下四个结论:①∠GAE=45°;②BG+DE=GE;③点G是BC的中点;④连接FC,则BF⊥FC;其中正确的结论序号是()A.①②③④B.①②③C.①②D.②③【答案】A【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE=∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG,再证出AG⊥BF,即可得出BF∥FC.【详解】解:连接AG,AG和BF交于H,如图所示: 正方形ABCD的边长为6,DC=3DE,∴DE=2,EC=4, 把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=AB=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,①正确;∴GE=GF+EF=BG+DE,②正确;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x, CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=63﹣=3,∴BG=CG,即点G为BC的中点,③正确;∴GF=GC,∴∠GFC=∠GCF,又 Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴FC∥AG, AB=AF,BG=FG,∴AG⊥BF,∴BF⊥FC,④正确;故选:A.【点睛】本题考查了折叠的性质、三角形全等的判定与性质、勾股定理、正方形的性质、平行线小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com的判定等知识;熟练掌握折叠的性质和全等三角形的判定是解题的关键.2.如图,先将正方形纸片对着,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下得到△ADH,则下列选项正确的个数为()①AE垂直平分HB;②∠HBN=15°;③DH=DC;④△ADH是一个等边三角形.A.1个B.2个C.3个D.4个【答案】D【分析】①由翻折的性质可知;点H与点B关于AE对称,故此AE⊥BH,④由翻折的性质AH=AB,MN垂直平分AD,于是得到DH=AH=AB=AD,故此△ADH为等边三角形,③由DH=AD可知DH=DC,②由△ADH为等边三角形可知∠HAB=30°,在△ABH中可求得∠ABH=75°,故此可求得∠HBN=15°.【详解】解:由翻折的性质可知:AE垂直平分HB,MN垂直平分AD.故①正确. MN垂直平分AD,∴DH=AH.由翻折的性质可知:AH=AB.∴AH=AD=DH.∴△ADH是一个等边三角形.故④正确. HD=AD,∴HD=DC.故③正确 △ADH是一个等边三角形,∴∠DAH=60°.∴∠HAB=30°. AB=AH,小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com∴∠ABH=×(180°30°﹣)=75°.∴∠HBN=15°.故②正确.故选D.【点睛】本题主要考查了正方形的性质、线段垂直平分线的性质、折叠的性质以及等边三角形的判定及性质,熟练掌握正方形的性质是解题的关键.3.如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=8,则折痕GH的长度为()A.4B.C.D.【答案】D【分析】连接EC,作GJ⊥CD于J,EF交GH于点Q,证明四边形BCJG是矩形,求出∠CEF=∠HGJ,然后证明△EFC≌△GJH(ASA),可得GH=EC,然后根据勾股定理即可解决问题.【详解】解:如图,连接EC,作GJ⊥CD于J,EF交GH于点Q, ∠BCD=∠ABC=90°,∴...