小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com专题05平行四边形六大模型模型一:中点四边形模型二:梯子模型模型三:十字架模型四:对角互补模型五:半角模型模型六:与正方形有关三垂线模型一:中点四边形中点四边形:依次连接四边形四边中点连线的四边形得到中点四边形O。结论1:点M、N、P、Q是任意四边形的中点,则四边形MNPQ是平行四边形结论2:对角线垂直的四边形的中点四边形是矩形结论3:对角线相等的四边形的中点四边形是菱形结论4:对角线垂直且相等的四边形的中点四边形是正方形小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【典例1】(2024•长沙模拟)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形【变式1-1】(2023•阳春市二模)若顺次连接四边形ABCD各边的中点所得的四边形是菱形,则四边形ABCD的两条对角线AC,BD一定是()A.互相平分B.互相平分且相等C.互相垂直D.相等【变式1-2】(2023•铜川一模)如图,AC、BD是四边形ABCD的两条对角线,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AC⊥BDB.AB=CDC.AB∥CDD.AC=BD【变式1-3】(2023春•宿豫区期中)顺次连接对角线相等且垂直的四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com模型二:梯子模型如下图,一根长度一定的梯子斜靠在竖直墙面上,当梯子底端滑动时,探究梯子上某点(如中点)或梯子构成图形上的点的轨迹模型(图2),就是所谓的梯子模型。[考查方向]已知一条线段的两个端点在坐标轴上滑动,求线段最值问题。模型一:如图所示,线段AC的两个端点在坐标轴上滑动,LACB=ZAOC=90AC°的中点为P,连接OP、BP、OB,则当O、P、B三点共线时,此时线段OB最大值。即已知RtAACB中AC、BC的长,就可求出梯子模型中OB的最值模型二:如图所示,矩形ABCD的顶点A、B分别在边OM、ON上,当点A在边OM上运动时,点B随之在ON上运动,且运动的过程中矩形ABCD形状保持不变,AB的中点为P,连接OP、PD、OD,则当O、P、D三点共线时,此时线段OD取最大值小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【典例2】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是.【变式2-1】如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C在x轴上,则点A在移动过程中,BO的最大值是.【变式2-2】如图,∠MEN=90°,矩形ABCD的顶点B,C分别是∠MEN两边上的动点,已知BC=10,CD=5,点D,E之间距离的最大值是.模型三:十字架第一种情况:过顶点在正方形ABCD中,AEBF⊥,可得AE=BF,借助于同角的余角相等,证明△BAFADE△≌(ASA)所以AE=BF小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com第二种情况:不过顶点在正方形ABCD中,E,F,G,H分别为AB,BC,CD,DA边上的点,其中:EGFH⊥,可得EG=FH也可以如下证明在正方形ABCD中,E,F,G,H分别AB、BC、CD、DA边上的点,其中:EGFH⊥,可得EG=FH【典例3】(2023春•商南县校级期末)如图,在正方形ABCD中,E,F分别是AB,BC的中点,CE,DF相交于点G,连接AG,求证:(1)CE⊥DF.(2)∠AGE=∠CDF.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3-1】(2023•黄石)如图,正方形ABCD中,点M,N分别在AB,BC上,且BM=CN,AN与DM相交于点P.(1)求证:△ABN≌△DAM;(2)求∠APM的大小.【变式3-2】(2023秋•惠阳区校级月考)如图1,已知正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.(1)请判断BE与DG的数量关系与位置关系,并证明你的结论.(2)如图2,已知AB=4,,当点F在边AD上时,求BE的长.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com【变式3-3】(2023春...